IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011001.html
   My bibliography  Save this article

Light bullets in a nonlocal Rydberg medium with PT-symmetric moiré optical lattices

Author

Listed:
  • Xu, Si-Liu
  • Zhu, Min
  • Peng, Jia-Xin
  • Fan, Xi
  • Huang, Qi-Hong
  • Hua, Chun-Bo
  • Zhao, Yuan

Abstract

Realizing stable light bullets in high dimensions is a long-standing goal in the study of nonlinear optics. Here, we propose a scheme for the creation of stable light bullets (LBs) in a cold Rydberg atomic gas system with PT symmetry moiré optical lattices. Depending on the synergetic local and nonlocal Kerr nonlinearities, and PT symmetry moiré optical lattices, we obtain an appropriate nonlocal Rydberg long-range interaction and PT symmetry potential which can compensate for the diffraction and dispersion of the probe field. Numerical results show that different spatial and temporal distributions of LBs, including fundamental, multi-pole solitons, and vortical ones are uncovered, and their stabilities are evaluated through linear-stability analysis and direct simulation with perturbation. Furthermore, the solitons exhibit a quasi-elastic collision in the transversal direction during propagation. Our study provides a new route for manipulating LBs via controlled optical nonlinearities and PT symmetry moiré optical lattices in cold Rydberg gases.

Suggested Citation

  • Xu, Si-Liu & Zhu, Min & Peng, Jia-Xin & Fan, Xi & Huang, Qi-Hong & Hua, Chun-Bo & Zhao, Yuan, 2023. "Light bullets in a nonlocal Rydberg medium with PT-symmetric moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011001
    DOI: 10.1016/j.chaos.2023.114198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Xiaoqin & Bai, Juan & Malomed, Boris A. & Yang, Rongcao, 2024. "Spectrum conversion and pattern preservation of Airy beams in fractional systems with a dynamical harmonic-oscillator potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Wang, Qing & Zhou, Liangliang & Zhu, Junying & He, Jun-Rong, 2024. "Multi-vortex beams in nonlinear media with harmonic potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Liu, Xianglian & Li, Xiaoqiong & Li, Kaizhou & Zhou, Jie & Shi, Yuan & Chen, Jingdong, 2023. "Coexistence of Fano and electromagnetically induced transparency resonance line shapes in photonic topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Li, Jiawei & Zhang, Yanpeng & Zeng, Jianhua, 2022. "Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Chen, Zhiming & Wu, Zexing & Zeng, Jianhua, 2023. "Light gap bullets in defocusing media with optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Chen, Junbo & Zeng, Jianhua, 2021. "Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.