IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1439415.html
   My bibliography  Save this article

NOESIS: A Framework for Complex Network Data Analysis

Author

Listed:
  • Víctor Martínez
  • Fernando Berzal
  • Juan-Carlos Cubero

Abstract

Network data mining has attracted a lot of attention since a large number of real-world problems have to deal with complex network data. In this paper, we present NOESIS, an open-source framework for network-based data mining. NOESIS features a large number of techniques and methods for the analysis of structural network properties, network visualization, community detection, link scoring, and link prediction. The proposed framework has been designed following solid design principles and exploits parallel computing using structured parallel programming. NOESIS also provides a stand-alone graphical user interface allowing the use of advanced software analysis techniques to users without prior programming experience. This framework is available under a BSD open-source software license.

Suggested Citation

  • Víctor Martínez & Fernando Berzal & Juan-Carlos Cubero, 2019. "NOESIS: A Framework for Complex Network Data Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, October.
  • Handle: RePEc:hin:complx:1439415
    DOI: 10.1155/2019/1439415
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1439415.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1439415.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1439415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    2. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    3. Mahendra Piraveenan & Mikhail Prokopenko & Liaquat Hossain, 2013. "Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
    4. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    3. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    4. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    6. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    7. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    8. Zhou, Yinzuo & Wu, Chencheng & Tan, Lulu, 2021. "Biased random walk with restart for link prediction with graph embedding method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    9. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    10. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    11. Zeng, Shan, 2016. "Link prediction based on local information considering preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 537-542.
    12. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    14. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    15. Li, Mingtao & Cui, Jin & Zhang, Juan & Pei, Xin & Sun, Guiquan, 2022. "Transmission characteristic and dynamic analysis of COVID-19 on contact network with Tianjin city in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    16. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    17. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    18. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    19. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    20. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1439415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.