A new approach to studying the thermodynamic properties of the q-state Potts model on a Cayley tree
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.113811
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ostilli, M., 2012. "Cayley Trees and Bethe Lattices: A concise analysis for mathematicians and physicists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3417-3423.
- Türkoğlu, Alpar & Berker, A. Nihat, 2021. "Phase transitions of the variety of random-field Potts models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
- Selman Uguz & Nasir Ganikhodjaev & Hasan Akin & Seyit Temir, 2012. "Lyapunov Exponents And Modulated Phases Of An Ising Model On Cayley Tree Of Arbitrary Order," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-15.
- Bornholdt, Stefan, 2022. "A q-spin Potts model of markets: Gain–loss asymmetry in stock indices as an emergent phenomenon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ostilli, M., 2024. "Exact results for the Ising model on a small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
- Akın, Hasan, 2023. "The classification of disordered phases of mixed spin (2,1/2) Ising model and the chaoticity of the corresponding dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Correia, A.D. & Leestmaker, L.L. & Stoof, H.T.C. & Broere, J.J., 2022. "Asymmetric games on networks: Towards an Ising-model representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Mukhamedov, Farrukh & Khakimov, Otabek, 2016. "Phase transition and chaos: P-adic Potts model on a Cayley tree," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 190-196.
More about this item
Keywords
Potts model; Competing interactions; Gibbs measure; Phase transition; Lyapunov exponent;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007129. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.