Phase transition and chaos: P-adic Potts model on a Cayley tree
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2016.04.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ostilli, M., 2012. "Cayley Trees and Bethe Lattices: A concise analysis for mathematicians and physicists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3417-3423.
- Khrennikov, Andrei & Yurova, Ekaterina, 2014. "Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 11-30.
- S. V. Lüdkovsky, 2005. "Non-Archimedean valued quasi-invariant descending at infinity measures," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2005, pages 1-19, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rozikov, U.A. & Sattarov, I.A., 2017. "p-adic dynamical systems of (2,2)-rational functions with unique fixed point," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 260-270.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ostilli, M., 2024. "Exact results for the Ising model on a small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
- Akın, Hasan, 2023. "The classification of disordered phases of mixed spin (2,1/2) Ising model and the chaoticity of the corresponding dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Correia, A.D. & Leestmaker, L.L. & Stoof, H.T.C. & Broere, J.J., 2022. "Asymmetric games on networks: Towards an Ising-model representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Akın, Hasan & Ulusoy, Suleyman, 2023. "A new approach to studying the thermodynamic properties of the q-state Potts model on a Cayley tree," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
More about this item
Keywords
p-adic numbers; Potts model; p-adic quasi Gibbs measure; Periodic; Shift;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:87:y:2016:i:c:p:190-196. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.