IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v583y2021ics0378437121006129.html
   My bibliography  Save this article

Phase transitions of the variety of random-field Potts models

Author

Listed:
  • Türkoğlu, Alpar
  • Berker, A. Nihat

Abstract

The phase transitions of random-field q-state Potts models in d=3 dimensions are studied by renormalization-group theory by exact solution of a hierarchical lattice and, equivalently, approximate Migdal–Kadanoff solutions of a cubic lattice. The recursion, under rescaling, of coupled random-field and random-bond (induced under rescaling by random fields) coupled probability distributions is followed to obtain phase diagrams. Unlike the Ising model (q=2), several types of random fields can be defined for q≥3 Potts models, including random-axis favored, random-axis disfavored, random-axis randomly favored or disfavored cases, all of which are studied. Quantitatively very similar phase diagrams are obtained, for a given q for the three types of field randomness, with the low-temperature ordered phase persisting, increasingly as temperature is lowered, up to random-field threshold in d=3, which is calculated for all temperatures below the zero-field critical temperature. Phase diagrams thus obtained are compared as a function of q. The ordered phase in the low-q models reaches higher temperatures, while in the high-q models it reaches higher random fields. This renormalization-group calculation result is physically explained.

Suggested Citation

  • Türkoğlu, Alpar & Berker, A. Nihat, 2021. "Phase transitions of the variety of random-field Potts models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
  • Handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121006129
    DOI: 10.1016/j.physa.2021.126339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006129
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Myshlyavtsev, A.V. & Myshlyavtseva, M.D. & Akimenko, S.S., 2020. "Classical lattice models with single-node interactions on hierarchical lattices: The two-layer Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    2. Ma, Fei & Su, Jing & Hao, Yongxing & Yao, Bing & Yan, Guanghui, 2018. "A class of vertex–edge-growth small-world network models having scale-free, self-similar and hierarchical characters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1194-1205.
    3. Nihat Berker, A., 1993. "Critical behavior induced by quenched disorder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 194(1), pages 72-76.
    4. Rocha-Neto, Mário J.G. & Camelo-Neto, G. & Nogueira Jr., E. & Coutinho, S., 2018. "The Blume–Capel model on hierarchical lattices: Exact local properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 559-573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akın, Hasan & Ulusoy, Suleyman, 2023. "A new approach to studying the thermodynamic properties of the q-state Potts model on a Cayley tree," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artun, E. Can & Keçoğlu, Ibrahim & Türkoğlu, Alpar & Berker, A. Nihat, 2023. "Multifractal spin-glass chaos projection and interrelation of multicultural music and brain signals," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Tunca, Egemen & Berker, A. Nihat, 2022. "Renormalization-group theory of the Heisenberg model in d dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    3. Anisimova, G.D. & Myshlyavtsev, A.V. & Akimenko, S.S., 2021. "The two-layer Ising model on a sequence of diamond-like hierarchical lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Keçoğlu, Ibrahim & Berker, A. Nihat, 2023. "Global Ashkin–Teller phase diagrams in two and three dimensions: Multicritical bifurcation versus double tricriticality—endpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Tamashiro, M.N. & Salinas, S.R.A., 1994. "A spin-S model on a Bethe lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 211(1), pages 124-146.
    6. Artun, E. Can & Sarman, Deniz & Berker, A. Nihat, 2024. "Nematic phase of the n-component cubic-spin spin glass in d = 3: Liquid-crystal phase in a dirty magnet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    7. Rocha-Neto, Mário J.G. & Camelo-Neto, G. & Nogueira, E. & Coutinho, S., 2023. "Thermodynamical behavior of the Blume–Capel model in the vicinity of its tricritical point," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    8. Liao, Yunhua & Aziz-Alaoui, M.A. & Zhao, Junchan & Hou, Yaoping, 2019. "The behavior of Tutte polynomials of graphs under five graph operations and its applications," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    9. Pektaş, Yiğit Ertaç & Artun, E. Can & Berker, A. Nihat, 2023. "Driven and non-driven surface chaos in spin-glass sponges," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121006129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.