IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004216.html
   My bibliography  Save this article

Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method

Author

Listed:
  • Biswas, Swapan
  • Ghosh, Uttam
  • Raut, Santanu

Abstract

The present article designs the granular metamaterials considering the granular structures of discrete particles which are different from elastic metamaterials consisting of continuous media. In granular metamaterials, the wave propagates through contact with neighboring particles. To identify the propagating properties of wave quantities in the rough granular medium the fractional granular equation is formulated directly in a pre-compressed spherical chain adopting Hertz law and long wave approximation theory. Using phase and group velocities, Caputo fractional derivatives are used to illustrate normal and anomalous dispersion wave dependence. To demonstrate in depth the dynamical behavior of the wave profile, various types of complex solutions like multi-shock, multi-solitons, lump, and breather solutions of the one-dimensional time fractional granular equations are explored employing Hirota’s bilinear approach. Finally, the more complicated hybrid solutions such as kink with the lump, soliton with the lump, etc. are exhibited from numerical understanding. The numerical graphs and figures demonstrate the crucial role of the order of derivative (roughness parameter) in the formation of different types of soliton solutions.

Suggested Citation

  • Biswas, Swapan & Ghosh, Uttam & Raut, Santanu, 2023. "Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004216
    DOI: 10.1016/j.chaos.2023.113520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hereman, Willy & Nuseir, Ameina, 1997. "Symbolic methods to construct exact solutions of nonlinear partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 43(1), pages 13-27.
    2. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    3. Hashemi, M.S., 2015. "Group analysis and exact solutions of the time fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Rui-rui & Shi, Ying & Zhao, Song-lin & Wang, Wen-zhuo, 2024. "The mKdV equation under the Gaussian white noise and Wiener process: Darboux transformation and stochastic soliton solutions," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Adel Elmandouh & Aqilah Aljuaidan & Mamdouh Elbrolosy, 2024. "The Integrability and Modification to an Auxiliary Function Method for Solving the Strain Wave Equation of a Flexible Rod with a Finite Deformation," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    3. Mandal, Uttam Kumar & Malik, Sandeep & Kumar, Sachin & Zhang, Yi & Das, Amiya, 2024. "Integrability aspects, rational type solutions and invariant solutions of an extended (3+1)-dimensional B-type Kadomtsev–Petviashvili equation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanislav Yu. Lukashchuk, 2022. "On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    2. Kumar, Sachin & Kumar, Amit, 2022. "Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 254-274.
    3. Aljohani, A.F. & Alqurashi, Bader Mutair & Kara, A.H., 2021. "Solitons, travelling waves, invariance, conservation laws and ‘approximate’ conservation of the extended Jimbo-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Bo Xu & Sheng Zhang, 2022. "Analytical Method for Generalized Nonlinear Schrödinger Equation with Time-Varying Coefficients: Lax Representation, Riemann-Hilbert Problem Solutions," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    5. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Ullah, Mohammad Safi & Baleanu, Dumitru & Ali, M. Zulfikar & Harun-Or-Roshid,, 2023. "Novel dynamics of the Zoomeron model via different analytical methods," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Khaled A. Gepreel, 2020. "Analytical Methods for Nonlinear Evolution Equations in Mathematical Physics," Mathematics, MDPI, vol. 8(12), pages 1-14, December.
    8. Arzu Akbulut & Melike Kaplan & Rubayyi T. Alqahtani & W. Eltayeb Ahmed, 2023. "On the Dynamics of the Complex Hirota-Dynamical Model," Mathematics, MDPI, vol. 11(23), pages 1-12, December.
    9. Wazwaz, Abdul-Majid, 2015. "New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 93-97.
    10. Zarea, Sana’a A., 2009. "The tanh method: A tool for solving some mathematical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 979-988.
    11. Seadawy, Aly R. & Ali, Asghar & Althobaiti, Saad & Sayed, Samy, 2021. "Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    13. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    14. Li, Hui & Li, Ye-Zhou, 2018. "Meromorphic exact solutions of two extended (3+1)-dimensional Jimbo–Miwa equations," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 369-375.
    15. El-Ganaini, Shoukry & Kumar, Sachin, 2023. "Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new impr," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 28-56.
    16. Sartanpara, Parthkumar P. & Meher, Ramakanta, 2023. "Solution of generalised fuzzy fractional Kaup–Kupershmidt equation using a robust multi parametric approach and a novel transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 939-969.
    17. Kudryashov, N.A. & Lavrova, S.F., 2021. "Dynamical features of the generalized Kuramoto-Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Khater, A.H. & Malfliet, W. & Kamel, E.S., 2004. "Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and higher dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 247-258.
    19. Hayman Thabet & Subhash Kendre & Dimplekumar Chalishajar, 2017. "New Analytical Technique for Solving a System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-15, September.
    20. Inc, Mustafa & Yusuf, Abdullahi & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 94-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.