IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v43y1997i1p13-27.html
   My bibliography  Save this article

Symbolic methods to construct exact solutions of nonlinear partial differential equations

Author

Listed:
  • Hereman, Willy
  • Nuseir, Ameina

Abstract

Two straightforward methods for finding solitary-wave and soliton solutions are presented and applied to a variety of nonlinear partial differential equations. The first method is a simplied version of Hirota's method. It is shown to be an effective tool to explicitly construct. multi-soliton solutions of completely integrable evolution equations of fifth-order, including the Kaup-Kupershmidt equation for which the soliton solutions were not previously known. The second technique is the truncated Painlevé expansion method or singular manifold method. It is used to find closed-form solitary-wave solutions of the Fitzhugh-Nagumo equation with convection term, and an evolution equation due to Calogero. Since both methods are algorithmic, they can be implemented in the language of any symbolic manipulation program.

Suggested Citation

  • Hereman, Willy & Nuseir, Ameina, 1997. "Symbolic methods to construct exact solutions of nonlinear partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 43(1), pages 13-27.
  • Handle: RePEc:eee:matcom:v:43:y:1997:i:1:p:13-27
    DOI: 10.1016/S0378-4754(96)00053-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475496000535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0378-4754(96)00053-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarea, Sana’a A., 2009. "The tanh method: A tool for solving some mathematical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 979-988.
    2. Al-Mdallal, Qasem M. & Syam, Muhammad I., 2007. "Sine–Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1610-1617.
    3. Sartanpara, Parthkumar P. & Meher, Ramakanta, 2023. "Solution of generalised fuzzy fractional Kaup–Kupershmidt equation using a robust multi parametric approach and a novel transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 939-969.
    4. Abdul-Majid Wazwaz & Ma’mon Abu Hammad & Ali O. Al-Ghamdi & Mansoor H. Alshehri & Samir A. El-Tantawy, 2023. "New (3+1)-Dimensional Kadomtsev–Petviashvili–Sawada– Kotera–Ramani Equation: Multiple-Soliton and Lump Solutions," Mathematics, MDPI, vol. 11(15), pages 1-11, August.
    5. Kudryashov, N.A. & Lavrova, S.F., 2021. "Dynamical features of the generalized Kuramoto-Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Wazwaz, Abdul-Majid, 2015. "New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 93-97.
    7. Biswas, Swapan & Ghosh, Uttam & Raut, Santanu, 2023. "Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Khater, A.H. & Malfliet, W. & Kamel, E.S., 2004. "Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and higher dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 247-258.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:43:y:1997:i:1:p:13-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.