IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001753.html
   My bibliography  Save this article

On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings

Author

Listed:
  • Khan, Muhammad Bilal
  • Othman, Hakeem A.
  • Santos-García, Gustavo
  • Saeed, Tareq
  • Soliman, Mohamed S.

Abstract

The most important operator in fractional theory that enables the classical theory of integrals to be generalized is the Riemann-Liouville fractional integrals. In this paper, we have introduced new fractional operators in the fuzzy environment known as fuzzy Riemann-Liouville fractional integrals having exponential kernels. All classical fractional integrals that depend upon exponential kernels are exceptional cases of this new one. Moreover, we have defined a new class of convex mappings which is known as exponential trigonometric convex fuzzy-number valued mappings. With the help of this class and the newly proposed fuzzy fractional integral operator, the well-known Hermite-Hadamard type and related inequalities are taken into account in this work. Moreover, some new versions of midpoint Hermite-Hadamard-type inequalities are also established. By applying these definitions, we have amassed some novel and classical exceptional cases that serve as implementations of the key findings. For the purpose of proving the viability of the fuzzy order relations put forth in this research, some nontrivial examples of fuzzy numbered valued convexity are also provided.

Suggested Citation

  • Khan, Muhammad Bilal & Othman, Hakeem A. & Santos-García, Gustavo & Saeed, Tareq & Soliman, Mohamed S., 2023. "On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001753
    DOI: 10.1016/j.chaos.2023.113274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Bilal Khan & Jorge E. Macías-Díaz & Savin Treanțǎ & Mohamed S. Soliman, 2022. "Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    2. Khan, Muhammad Bilal & Santos-García, Gustavo & Noor, Muhammad Aslam & Soliman, Mohamed S., 2022. "Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Yongfang Qi & Guoping Li & Shan Wang & Qing Zhi Wen, 2022. "Hermite–Hadamard–Fejã‰R-Type Inequalities Via Katugampola Fractional Integrals For S-Convex Functions In The Second Sense," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-11, November.
    4. Set, Erhan & Butt, Saad Ihsan & Akdemir, Ahmet Ocak & Karaoǧlan, Ali & Abdeljawad, Thabet, 2021. "New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Muhammad Bilal Khan & Hakeem A. Othman & Michael Gr. Voskoglou & Lazim Abdullah & Alia M. Alzubaidi, 2023. "Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    6. Yongfang Qi & Qingzhi Wen & Guoping Li & Kecheng Xiao & Shan Wang, 2022. "DISCRETE HERMITE–HADAMARD-TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Bilal Khan & Ali Althobaiti & Cheng-Chi Lee & Mohamed S. Soliman & Chun-Ta Li, 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities," Mathematics, MDPI, vol. 11(13), pages 1-23, June.
    2. Mesfer H. Alqahtani & Der-Chyuan Lou & Fahad Sikander & Yaser Saber & Cheng-Chi Lee, 2024. "Novel Fuzzy Ostrowski Integral Inequalities for Convex Fuzzy-Valued Mappings over a Harmonic Convex Set: Extending Real-Valued Intervals Without the Sugeno Integrals," Mathematics, MDPI, vol. 12(22), pages 1-29, November.
    3. Tavazoei, Mohammad Saleh, 2023. "Autonomous second-order nonlinear systems and weighted linearization: Under what conditions are the inherent specifications preserved?," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Muhammad Bilal & Guirao, Juan L.G., 2023. "Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Muhammad Bilal Khan & Aleksandr Rakhmangulov & Najla Aloraini & Muhammad Aslam Noor & Mohamed S. Soliman, 2023. "Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    3. Muhammad Bilal Khan & Eze R. Nwaeze & Cheng-Chi Lee & Hatim Ghazi Zaini & Der-Chyuan Lou & Khalil Hadi Hakami, 2023. "Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates," Mathematics, MDPI, vol. 11(24), pages 1-27, December.
    4. Muhammad Bilal Khan & Hakeem A. Othman & Michael Gr. Voskoglou & Lazim Abdullah & Alia M. Alzubaidi, 2023. "Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    5. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    6. Muhammad Bilal Khan & Ali Althobaiti & Cheng-Chi Lee & Mohamed S. Soliman & Chun-Ta Li, 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities," Mathematics, MDPI, vol. 11(13), pages 1-23, June.
    7. Muhammad Bilal Khan & Gustavo Santos-García & Muhammad Aslam Noor & Mohamed S. Soliman, 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    8. Peng, Yu & Özcan, Serap & Du, Tingsong, 2024. "Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    9. Tareq Saeed & Muhammad Bilal Khan & Savin Treanță & Hamed H. Alsulami & Mohammed Sh. Alhodaly, 2023. "Study of Log Convex Mappings in Fuzzy Aunnam Calculus via Fuzzy Inclusion Relation over Fuzzy-Number Space," Mathematics, MDPI, vol. 11(9), pages 1-16, April.
    10. Eghlimi, Hadi & Asgari, Mohammad Sadegh, 2023. "A study of the time-fractional heat equation under the generalized Hukuhara conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Abd-Allah Hyder & Areej A. Almoneef & Hüseyin Budak & Mohamed A. Barakat, 2022. "On New Fractional Version of Generalized Hermite-Hadamard Inequalities," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    12. Almutairi, Ohud & Kiliçman, Adem, 2021. "Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    13. Butt, Saad Ihsan & Khan, Ahmad, 2023. "New fractal–fractional parametric inequalities with applications," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Asfand Fahad & Ayesha & Yuanheng Wang & Saad Ihsaan Butt, 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA- h -Convex Functions and Its Subclasses with Applications," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    15. Yu, Yuping & Liu, Jun & Du, Tingsong, 2022. "Certain error bounds on the parameterized integral inequalities in the sense of fractal sets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Du, Tingsong & Yuan, Xiaoman, 2023. "On the parameterized fractal integral inequalities and related applications," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    17. Muhammad Bilal Khan & Jorge E. Macías-Díaz & Savin Treanțǎ & Mohamed S. Soliman, 2022. "Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions," Mathematics, MDPI, vol. 10(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.