IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005380.html
   My bibliography  Save this article

Certain error bounds on the parameterized integral inequalities in the sense of fractal sets

Author

Listed:
  • Yu, Yuping
  • Liu, Jun
  • Du, Tingsong

Abstract

The objective of this study is to research certain integral inequalities with a parameter through the generalized (s, P)-preinvex mappings in the frame of fractal space. In view of this, we propose and investigate the conception of the generalized (s, P)-preinvex mappings and their related properties. Meanwhile, we establish an integral identity in the settings of fractal sets and present the parameterized integral inequalities for mappings whose first-order derivatives in absolute value belong to the generalized (s, P)-preinvexity. As applications with regard to local fractional integral operators, we consider applying the derived findings to v-type special means, numerical integrations, as well as extended probability distribution mappings, respectively.

Suggested Citation

  • Yu, Yuping & Liu, Jun & Du, Tingsong, 2022. "Certain error bounds on the parameterized integral inequalities in the sense of fractal sets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005380
    DOI: 10.1016/j.chaos.2022.112328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarikaya, Mehmet Zeki & Tunc, Tuba & Budak, Hüseyin, 2016. "On generalized some integral inequalities for local fractional integrals," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 316-323.
    2. Wenbing Sun, 2021. "LOCAL FRACTIONAL OSTROWSKI-TYPE INEQUALITIES INVOLVING GENERALIZED h-CONVEX FUNCTIONS AND SOME APPLICATIONS FOR GENERALIZED MOMENTS," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(01), pages 1-12, February.
    3. Chunyan Luo & Yuping Yu & Tingsong Du, 2021. "An Improvement Of Hã–Lder Integral Inequality On Fractal Sets And Some Related Simpson-Like Inequalities," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-20, August.
    4. Erden, Samet & Sarikaya, Mehmet Zeki, 2016. "Generalized Pompeiu type inequalities for local fractional integrals and its applications," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 282-291.
    5. Ohud Almutairi & Adem Kılıçman, 2020. "Integral Inequalities for s -Convexity via Generalized Fractional Integrals on Fractal Sets," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    6. Wenbing Sun, 2021. "HERMITE–HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED s-PREINVEX FUNCTIONS AND THEIR GENERALIZATION," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(04), pages 1-16, June.
    7. Set, Erhan & Butt, Saad Ihsan & Akdemir, Ahmet Ocak & Karaoǧlan, Ali & Abdeljawad, Thabet, 2021. "New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Tingsong & Yuan, Xiaoman, 2023. "On the parameterized fractal integral inequalities and related applications," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Butt, Saad Ihsan & Khan, Ahmad, 2023. "New fractal–fractional parametric inequalities with applications," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Abdullah Ali H. Ahmadini & Waqar Afzal & Mujahid Abbas & Elkhateeb S. Aly, 2024. "Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for ( h 1 , h 2 ) –Godunova–Levin Preinvex Function with Applications and Two Open Problems," Mathematics, MDPI, vol. 12(3), pages 1-28, January.
    4. Çi̇ri̇ş, Sümeyye Ermeydan & Yildirim, Hüseyin, 2024. "Hermite–Hadamard inequalities for generalized σ−conformable integrals generated by co-ordinated functions," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Qingjin & Luo, Chunyan, 2022. "Estimation of the parameterized integral inequalities involving generalized p-convex mappings on fractal sets and related applications," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Butt, Saad Ihsan & Khan, Ahmad, 2023. "New fractal–fractional parametric inequalities with applications," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Du, Tingsong & Yuan, Xiaoman, 2023. "On the parameterized fractal integral inequalities and related applications," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Luo, Chunyan & Wang, Hao & Du, Tingsong, 2020. "Fejér–Hermite–Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Almutairi, Ohud & Kiliçman, Adem, 2021. "Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Meftah, B. & Souahi, A. & Merad, M., 2022. "Some local fractional Maclaurin type inequalities for generalized convex functions and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Yu, Shuhong & Zhou, Yunxiu & Du, Tingsong, 2022. "Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Khan, Muhammad Bilal & Guirao, Juan L.G., 2023. "Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Abd-Allah Hyder & Areej A. Almoneef & Hüseyin Budak & Mohamed A. Barakat, 2022. "On New Fractional Version of Generalized Hermite-Hadamard Inequalities," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    10. Peng, Yu & Özcan, Serap & Du, Tingsong, 2024. "Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. Muhammad Bilal Khan & Eze R. Nwaeze & Cheng-Chi Lee & Hatim Ghazi Zaini & Der-Chyuan Lou & Khalil Hadi Hakami, 2023. "Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates," Mathematics, MDPI, vol. 11(24), pages 1-27, December.
    12. Khan, Muhammad Bilal & Othman, Hakeem A. & Santos-García, Gustavo & Saeed, Tareq & Soliman, Mohamed S., 2023. "On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Asfand Fahad & Ayesha & Yuanheng Wang & Saad Ihsaan Butt, 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA- h -Convex Functions and Its Subclasses with Applications," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    14. Abdo, Mohammed S. & Abdeljawad, Thabet & Ali, Saeed M. & Shah, Kamal & Jarad, Fahd, 2020. "Existence of positive solutions for weighted fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    15. Wedad Saleh & Abdelghani Lakhdari & Ohud Almutairi & Adem Kiliçman, 2023. "Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized ( E , h )-Convexity," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    16. Set, Erhan & Akdemi̇r, Ahmet Ocak & Karaoğlan, Ali̇, 2024. "New integral inequalities for synchronous functions via Atangana–Baleanu fractional integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    17. Razzaq, Arslan & Rasheed, Tahir & Shaokat, Shahid, 2023. "Generalized Hermite–Hadamard type inequalities for generalized F-convex function via local fractional integrals," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.