IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923009086.html
   My bibliography  Save this article

A study of the time-fractional heat equation under the generalized Hukuhara conformable fractional derivative

Author

Listed:
  • Eghlimi, Hadi
  • Asgari, Mohammad Sadegh

Abstract

In this article, we address the dual challenges posed by the complexities of fractional calculus and fuzzy uncertainty in mathematical modeling, with a specific focus on the time-fractional heat equation. We introduce a novel concept, the partial generalized Hukuhara conformable fractional derivative, as a bridge between these domains. Complementing this concept, we develop a unique fuzzy tϑϑ-Laplace transform, which enables efficient problem-solving. This transformative approach, coupled with the fuzzy Fourier transform, provides a novel method for deriving fundamental fuzzy solutions for the time-fractional heat equation. We substantiate our approach through successful examples, highlighting its efficacy in complex scenarios. This study pioneers an innovative methodology that unites fractional calculus and fuzzy logic, opening new avenues for addressing real-world challenges.

Suggested Citation

  • Eghlimi, Hadi & Asgari, Mohammad Sadegh, 2023. "A study of the time-fractional heat equation under the generalized Hukuhara conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009086
    DOI: 10.1016/j.chaos.2023.114007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najariyan, Marzieh & Qiu, Li, 2023. "Singular fuzzy fractional quadratic regulator problem," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Khan, Muhammad Bilal & Santos-García, Gustavo & Noor, Muhammad Aslam & Soliman, Mohamed S., 2022. "Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. M. Keshavarz & T. Allahviranloo & S. Abbasbandy & M. H. Modarressi, 2021. "A Study of Fuzzy Methods for Solving System of Fuzzy Differential Equations," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-27, March.
    4. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Martynyuk, Anatoliy A. & Stamov, Gani Tr. & Stamova, Ivanka M., 2020. "Fractional-like Hukuhara derivatives in the theory of set-valued differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Atimad Harir & Said Melliani & Lalla Saadia Chadli, 2021. "Fuzzy Conformable Fractional Differential Equations," International Journal of Differential Equations, Hindawi, vol. 2021, pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Muhammad Bilal & Guirao, Juan L.G., 2023. "Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Muhammad Bilal Khan & Gustavo Santos-García & Muhammad Aslam Noor & Mohamed S. Soliman, 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    3. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    4. Kumar, Sachin & Nieto, Juan J. & Ahmad, Bashir, 2022. "Chebyshev spectral method for solving fuzzy fractional Fredholm–Volterra integro-differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 501-513.
    5. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Muhammad Bilal Khan & Aleksandr Rakhmangulov & Najla Aloraini & Muhammad Aslam Noor & Mohamed S. Soliman, 2023. "Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    7. Muhammad Bilal Khan & Eze R. Nwaeze & Cheng-Chi Lee & Hatim Ghazi Zaini & Der-Chyuan Lou & Khalil Hadi Hakami, 2023. "Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates," Mathematics, MDPI, vol. 11(24), pages 1-27, December.
    8. Khan, Muhammad Bilal & Othman, Hakeem A. & Santos-García, Gustavo & Saeed, Tareq & Soliman, Mohamed S., 2023. "On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2021. "Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    10. Muhammad Bilal Khan & Hakeem A. Othman & Michael Gr. Voskoglou & Lazim Abdullah & Alia M. Alzubaidi, 2023. "Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    11. Tareq Saeed & Muhammad Bilal Khan & Savin Treanță & Hamed H. Alsulami & Mohammed Sh. Alhodaly, 2023. "Study of Log Convex Mappings in Fuzzy Aunnam Calculus via Fuzzy Inclusion Relation over Fuzzy-Number Space," Mathematics, MDPI, vol. 11(9), pages 1-16, April.
    12. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    14. Muhammad Bilal Khan & Ali Althobaiti & Cheng-Chi Lee & Mohamed S. Soliman & Chun-Ta Li, 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities," Mathematics, MDPI, vol. 11(13), pages 1-23, June.
    15. Muhammad Bilal Khan & Jorge E. Macías-Díaz & Savin Treanțǎ & Mohamed S. Soliman, 2022. "Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    16. Gao, Wei & Baskonus, Haci Mehmet, 2022. "Deeper investigation of modified epidemiological computer virus model containing the Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.