On New Fractional Version of Generalized Hermite-Hadamard Inequalities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Set, Erhan & Butt, Saad Ihsan & Akdemir, Ahmet Ocak & Karaoǧlan, Ali & Abdeljawad, Thabet, 2021. "New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Çi̇ri̇ş, Sümeyye Ermeydan & Yildirim, Hüseyin, 2024. "Hermite–Hadamard inequalities for generalized σ−conformable integrals generated by co-ordinated functions," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khan, Muhammad Bilal & Guirao, Juan L.G., 2023. "Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Peng, Yu & Özcan, Serap & Du, Tingsong, 2024. "Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
- Almutairi, Ohud & Kiliçman, Adem, 2021. "Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Butt, Saad Ihsan & Khan, Ahmad, 2023. "New fractal–fractional parametric inequalities with applications," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Muhammad Bilal Khan & Eze R. Nwaeze & Cheng-Chi Lee & Hatim Ghazi Zaini & Der-Chyuan Lou & Khalil Hadi Hakami, 2023. "Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates," Mathematics, MDPI, vol. 11(24), pages 1-27, December.
- Khan, Muhammad Bilal & Othman, Hakeem A. & Santos-García, Gustavo & Saeed, Tareq & Soliman, Mohamed S., 2023. "On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Asfand Fahad & Ayesha & Yuanheng Wang & Saad Ihsaan Butt, 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA- h -Convex Functions and Its Subclasses with Applications," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
- Yu, Yuping & Liu, Jun & Du, Tingsong, 2022. "Certain error bounds on the parameterized integral inequalities in the sense of fractal sets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Du, Tingsong & Yuan, Xiaoman, 2023. "On the parameterized fractal integral inequalities and related applications," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
More about this item
Keywords
midpoint inequalities; Hermite-Hadamard inequality; generalized fractional operators;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3337-:d:915283. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.