IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001364.html
   My bibliography  Save this article

Two-attractor chimera and solitary states in a network of nonlocally coupled birhythmic van der Pol oscillators

Author

Listed:
  • Nganso, E. Njinkeu
  • Mbouna, S.G. Ngueuteu
  • Yamapi, R.
  • Filatrella, G.
  • Kurths, J.

Abstract

In this paper, a network of van der Pol oscillators with extended nonlinearity is considered in the context of studies on symmetry-breaking phenomena. The van der Pol oscillator with extended nonlinearity has been widely considered as a model for coherent oscillations in enzyme–substrate systems. The particularity of this model is its multistability known as birhythmicity. Due to this feature of the local dynamics, the coupled dynamics shows a rich variety of symmetry-breaking phenomena, among which peculiar chimera and solitary states involving two types of attractors, namely a large limit cycle and a smaller attractor with quasiperiodic-like oscillations. The units of the main incoherent regions of a pattern of this two-attractor chimera evolve only on the large limit cycle whereas those of the main coherent regions evolve only on the smaller attractor. Also, as a consequence of birhythmicity, the mean phase velocity profile of this chimera pattern shows two levels of frequency, each level corresponding to each attractor. On the other hand, the frequencies of oscillations of the solitary units of the solitary states found there are different from the common frequency of oscillations in the coherent cluster, contrary to the classical solitary states for which all the network units are frequency locked. Interestingly, a phenomenon of coupling-induced birhythmicity is found here: two-attractor patterns emerge in the considered network with monorhythmic local dynamics. This study deepens our understanding of patterns formation in coupled multistable systems.

Suggested Citation

  • Nganso, E. Njinkeu & Mbouna, S.G. Ngueuteu & Yamapi, R. & Filatrella, G. & Kurths, J., 2023. "Two-attractor chimera and solitary states in a network of nonlocally coupled birhythmic van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001364
    DOI: 10.1016/j.chaos.2023.113235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niels C Rattenborg & Bryson Voirin & Sebastian M. Cruz & Ryan Tisdale & Giacomo Dell’Omo & Hans-Peter Lipp & Martin Wikelski & Alexei L. Vyssotski, 2016. "Evidence that birds sleep in mid-flight," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    2. Schülen, Leonhard & Ghosh, Saptarshi & Kachhvah, Ajay Deep & Zakharova, Anna & Jalan, Sarika, 2019. "Delay engineered solitary states in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 290-296.
    3. González-Avella, J.C. & Cosenza, M.G. & San Miguel, M., 2014. "Localized coherence in two interacting populations of social agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 24-30.
    4. Legoya, P.G. & Etémé, A.S. & Tabi, C.B. & Mohamadou, A. & Kofané, T.C., 2022. "Frequency modes of unstable spiral waves in two-dimensional Rosenzweig–MacArthur ecological networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Chéagé Chamgoué, A. & Ngueuteu, G.S.M. & Yamapi, R. & Woafo, P., 2018. "Memory effect in a self-sustained birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 160-169.
    8. Kadji, H.G. Enjieu & Orou, J.B. Chabi & Yamapi, R. & Woafo, P., 2007. "Nonlinear dynamics and strange attractors in the biological system," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 862-882.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mbakob Yonkeu, R. & David, Afungchui, 2022. "Coherence and stochastic resonance in the fractional-birhythmic self-sustained system subjected to fractional time-delay feedback and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Kalloniatis, Alexander C. & Zuparic, Mathew L., 2016. "Fixed points and stability in the two-network frustrated Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 21-35.
    5. Taiwo O. Roy-Layinde & Kehinde A. Omoteso & Babatunde A. Oyero & John A. Laoye & Uchechukwu E. Vincent, 2022. "Vibrational resonance of ammonia molecule with doubly singular position-dependent mass," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(5), pages 1-11, May.
    6. Collet, Jacques Henri & Fanchon, Jean, 2015. "Crystallization and tile separation in the multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 405-417.
    7. Alvarez-Socorro, A.J. & Clerc, M.G. & Ferré, M.A., 2020. "Wandering walk of chimera states in a continuous medium," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Rybalova, E.V. & Zakharova, A. & Strelkova, G.I., 2021. "Interplay between solitary states and chimeras in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    9. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Qiao, Zijian & He, Yuanbiao & Liao, Changrong & Zhu, Ronghua, 2023. "Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Zhou, Zhao-Xiang & Yang, Ke-Li & Wang, Can-Jun & Yu, Biao & Li, Xu-Bo & Su, Yue-Wen, 2023. "Theory and numerics of vibrational resonance in a three-level atomic optical bistable system," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Alexandros Rontogiannis & Astero Provata, 2021. "Chimera states in FitzHugh–Nagumo networks with reflecting connectivity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(5), pages 1-12, May.
    13. Yonkeu, R. Mbakob, 2023. "Stochastic bifurcations induced by Lévy noise in a fractional trirhythmic van der Pol system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Ghosh, Anupam, 2023. "Measure synchronization in interacting Hamiltonian systems: A brief review," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Járdánházy, Anett & Molnár, Márk & Járdánházy, Tamás, 2009. "Point correlation dimension can reveal functional changes caused by gap junction blockers in the 4-aminopyridine in vivo rat epilepsy model," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 286-297.
    17. Roy-Layinde, T.O. & Omoteso, K.A. & Diala, U.H. & Runsewe, J.A. & Laoye, J.A., 2024. "Analysis of vibrational resonance in an oscillator with exponential mass variation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.