IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922007871.html
   My bibliography  Save this article

Frequency modes of unstable spiral waves in two-dimensional Rosenzweig–MacArthur ecological networks

Author

Listed:
  • Legoya, P.G.
  • Etémé, A.S.
  • Tabi, C.B.
  • Mohamadou, A.
  • Kofané, T.C.

Abstract

The existence of two frequency regimes in a two-dimensional (2D) Rosenzweig–MacArthur ecological network is debated. The semi-discrete approximation differentiates the two regimes, each described by a 2D complex Ginzburg–Landau equation. Using the standard theory of the linear stability analysis, a generalized expression for the modulational instability growth rate is derived for each frequency mode. The parametric study of the growth rate of modulational instability reveals its sensitivity to the changes in the recruitment rate of the resources. Moreover, direct numerical simulations are carried out to confirm our analytical results. Over the prolonged evolution of the perturbed plane wave solution, the high-frequency mode entertains spiral wave patterns. In contrast, the appearance of target waves manifests the low-frequency regime. In that context, we further explore the impact of the recruitment rate of resources and give the qualitative meaning of the obtained dynamical behaviors and their ecological implications. This work may additionally provide more insight into the mechanism leading to spiral and target waves in environmental systems.

Suggested Citation

  • Legoya, P.G. & Etémé, A.S. & Tabi, C.B. & Mohamadou, A. & Kofané, T.C., 2022. "Frequency modes of unstable spiral waves in two-dimensional Rosenzweig–MacArthur ecological networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922007871
    DOI: 10.1016/j.chaos.2022.112599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nganso, E. Njinkeu & Mbouna, S.G. Ngueuteu & Yamapi, R. & Filatrella, G. & Kurths, J., 2023. "Two-attractor chimera and solitary states in a network of nonlocally coupled birhythmic van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922007871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.