IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000528.html
   My bibliography  Save this article

An integral boundary fractional model to the world population growth

Author

Listed:
  • Wanassi, Om Kalthoum
  • Torres, Delfim F.M.

Abstract

We consider a fractional differential equation of order α, α∈(2,3], involving a ψ-Caputo fractional derivative subject to initial conditions on function and its first derivative and an integral boundary condition that depends on the unknown function. As an application, we investigate the world population growth. We find an order α and a function ψ for which the solution of our fractional model describes given real data better than available models.

Suggested Citation

  • Wanassi, Om Kalthoum & Torres, Delfim F.M., 2023. "An integral boundary fractional model to the world population growth," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000528
    DOI: 10.1016/j.chaos.2023.113151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ying & Liu, Lishan & Zhang, Xinguang & Wu, Yonghong, 2015. "Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 312-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongyi Gu & Fanning Meng, 2019. "Searching for Analytical Solutions of the (2+1)-Dimensional KP Equation by Two Different Systematic Methods," Complexity, Hindawi, vol. 2019, pages 1-11, August.
    2. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Study on Implicit-Type Fractional Coupled System with Integral Boundary Conditions," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    3. Sheng Zhang & Lijie Zhang & Bo Xu, 2019. "Rational Waves and Complex Dynamics: Analytical Insights into a Generalized Nonlinear Schrödinger Equation with Distributed Coefficients," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    4. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    5. Du, Feifei & Lu, Jun-Guo, 2020. "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    6. Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
    7. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Youzheng Ding & Jiafa Xu & Zhengqing Fu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann–Liouville Type Involving Semipositone Nonlinearities," Mathematics, MDPI, vol. 7(10), pages 1-19, October.
    9. Fang Wang & Lishan Liu & Yonghong Wu & Yumei Zou, 2019. "Iterative Analysis of the Unique Positive Solution for a Class of Singular Nonlinear Boundary Value Problems Involving Two Types of Fractional Derivatives with p -Laplacian Operator," Complexity, Hindawi, vol. 2019, pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.