IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.06935.html
   My bibliography  Save this paper

The noisy voter model on complex networks

Author

Listed:
  • Adri'an Carro
  • Ra'ul Toral
  • Maxi San Miguel

Abstract

We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity ---variance of the underlying degree distribution--- has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.

Suggested Citation

  • Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
  • Handle: RePEc:arx:papers:1602.06935
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.06935
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Alfarano & M. Milakovic & M. Raddant, 2013. "A note on institutional hierarchy and volatility in financial markets," The European Journal of Finance, Taylor & Francis Journals, vol. 19(6), pages 449-465, July.
    2. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    3. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    4. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    5. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    6. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    7. Granovsky, Boris L. & Madras, Neal, 1995. "The noisy voter model," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 23-43, January.
    8. Lebowitz, Joel L. & Saleur, H., 1986. "Percolation in strongly correlated systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(1), pages 194-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eminente, Clara & Artime, Oriol & De Domenico, Manlio, 2022. "Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Franch, Fabio & Nocciola, Luca & Vouldis, Angelos, 2024. "Temporal networks and financial contagion," Journal of Financial Stability, Elsevier, vol. 71(C).
    3. Kozitsin, Ivan V., 2024. "Optimal control in opinion dynamics models: diversity of influence mechanisms and complex influence hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Zhang, Wei & Brandes, Ulrik, 2023. "Conformity versus credibility: A coupled rumor-belief model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Vincent Verbavatz & Marc Barthelemy, 2024. "Modeling the spatial dynamics of income in cities," Environment and Planning B, , vol. 51(1), pages 128-139, January.
    6. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    7. Moran, José & Fosset, Antoine & Kirman, Alan & Benzaquen, Michael, 2021. "From ants to fishing vessels: a simple model for herding and exploitation of finite resources," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    8. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    9. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    10. Lee, Woosub & Yang, Seong-Gyu & Kim, Beom Jun, 2022. "The effect of media on opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    11. Lücke, Marvin & Heitzig, Jobst & Koltai, Péter & Molkenthin, Nora & Winkelmann, Stefanie, 2023. "Large population limits of Markov processes on random networks," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    12. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    2. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    3. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    4. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    5. Eminente, Clara & Artime, Oriol & De Domenico, Manlio, 2022. "Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    7. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    8. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    9. Kononovicius, A. & Gontis, V., 2014. "Control of the socio-economic systems using herding interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 80-84.
    10. Kirill S. Glavatskiy & Mikhail Prokopenko & Adrian Carro & Paul Ormerod & Michael Harré, 2021. "Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model," SN Business & Economics, Springer, vol. 1(6), pages 1-21, June.
    11. Vygintas Gontis & Aleksejus Kononovicius, 2017. "Spurious memory in non-equilibrium stochastic models of imitative behavior," Papers 1707.09801, arXiv.org.
    12. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2013. "Signal amplification in an agent-based herding model," Papers 1302.6477, arXiv.org, revised Sep 2015.
    13. Kononovicius, Aleksejus, 2021. "Supportive interactions in the noisy voter model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Alfarano Simone & Milakovic Mishael, 2012. "Identification of Interaction Effects in Survey Expectations: A Cautionary Note," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-23, October.
    15. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    16. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    17. Albrecht Irle & Jonas Kauschke & Thomas Lux & Mishael Milaković, 2011. "Switching Rates And The Asymptotic Behavior Of Herding Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 359-376.
    18. Sunyoung Lee & Keun Lee, 2021. "3% rules the market: herding behavior of a group of investors, asset market volatility, and return to the group in an agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 359-380, April.
    19. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.
    20. Nicolas, Maxime L.D., 2022. "Estimating a model of herding behavior on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.06935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.