IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008414.html
   My bibliography  Save this article

Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana–Baleanu fractional operator: Real data approach

Author

Listed:
  • Xu, Changjin
  • Liu, Zixin
  • Pang, Yicheng
  • Saifullah, Sayed
  • Inc, Mustafa

Abstract

There are many fatal diseases which are caused by virus. Different types of viruses cause different infections. One of them is HIV-1 infection which caused by retrovirus. HIV-1 infection is a hazardous disease that can lead to cancer, AIDS, and other serious illnesses. Several mathematical models have been proposed in the field and examined using various methods. In this manuscript, the newly suggested piece-wise (PW) Atangana–Baleanu (AB) fractional operator is used to examine HIV-1 infection. Some theorems related to the existence of the solution to the examined model are proved through fixed point results. The Ulam–Hyers (UH) stability and its different forms are presented for the proposed PW HIV-1 infection model. The considered model’s numerical results are attained via the Newton interpolation method. The results are graphically illustrated via MATLAB software to show the behavior of the considered model. Oscillatory and complex dynamics are obtained for some fractional orders and show the crossover behavior of the proposed model. The model’s simulation of infected class is fitted with the real data taken for six different countries. It proves the validity and accuracy of the suggested approach.

Suggested Citation

  • Xu, Changjin & Liu, Zixin & Pang, Yicheng & Saifullah, Sayed & Inc, Mustafa, 2022. "Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana–Baleanu fractional operator: Real data approach," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008414
    DOI: 10.1016/j.chaos.2022.112662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Haidong & Rahman, Mati ur & Ahmad, Shabir & Riaz, Muhammad Bilal & Ibrahim, Muhammaad & Saeed, Tareq, 2022. "Investigation of fractional order bacteria dependent disease with the effects of different contact rates," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2021. "Dynamical Analysis of Bio-Ethanol Production Model under Generalized Nonlocal Operator in Caputo Sense," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    3. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Atangana, Abdon & İğret Araz, Seda, 2021. "New concept in calculus: Piecewise differential and integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2021. "Mathematical Analysis of Biodegradation Model under Nonlocal Operator in Caputo Sense," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kar, Silajit & Maiti, Dilip K. & Maiti, Atasi Patra, 2024. "Impacts of non-locality and memory kernel of fractional derivative, awareness and treatment strategies on HIV/AIDS prevalence," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Akgül, Ali & Baleanu, Dumitru, 2022. "Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Akgül, Ali & Baleanu, Dumitru, 2022. "Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Shah, Kamal & Abdeljawad, Thabet & Ali, Arshad, 2022. "Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Shafiya, M. & Nagamani, G., 2022. "New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Daşbaşı, Bahatdin, 2023. "Fractional order bacterial infection model with effects of anti-virulence drug and antibiotic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Nasser H. Sweilam & Seham M. AL-Mekhlafi & Saleh M. Hassan & Nehaya R. Alsenaideh & Abdelaziz Elazab Radwan, 2022. "New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments," Mathematics, MDPI, vol. 10(23), pages 1-18, December.
    15. Xu, Changjin & Alhejaili, Weaam & Saifullah, Sayed & Khan, Arshad & Khan, Javed & El-Shorbagy, M.A., 2022. "Analysis of Huanglongbing disease model with a novel fractional piecewise approach," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Rafiq, Naila & Shoaib, Muhammad & Kiani, Adiqa Kausar & Shu, Chi-Min, 2022. "Design of intelligent computing networks for nonlinear chaotic fractional Rossler system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    19. Rehman, Attiq ul & Singh, Ram & Singh, Jagdev, 2022. "Mathematical analysis of multi-compartmental malaria transmission model with reinfection," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.