IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008098.html
   My bibliography  Save this article

PixAdapt: A novel approach to adaptive image encryption

Author

Listed:
  • Tuli, Rohan
  • Soneji, Hitesh Narayan
  • Churi, Prathamesh

Abstract

Image encryption using genetic approach is a recent and advanced technique which has grabbed attention in recent years. Currently, most image encryption algorithms (using genetic approach) use a static set of parameters for image encryption without considering the features representative of the image. In this study, an innovative adaptive image encryption algorithm – PixAdapt is developed. The process of image encryption is being re-engineered in a way to calculate the fitness of encrypted image using UACI and adapting the respective parameters using genetic hill climb or simulated annealing. Pseudorandom numbers have been generated using the linear feedback shift register and chaos-based maps such as the Logistic map, Rossler map, Henon map and Tent map. PixAdapt algorithm also uses confusion and diffusion process to ensure that plain text image and cipher text image are completely un-related. The use of metaheuristic search techniques for optimization of image encryption parameters has been implemented for the first time. The results obtained show that the genetic hill climb algorithm encrypts the various images giving the most optimal value of UACI. The algorithm has been tested for fitness improvement, parameter evolution, statistical analysis, and quality of encryption. PixAdapt is not only unique but has proven the encryption parameter UACI to be an appropriate fitness function to encrypt an image efficiently.

Suggested Citation

  • Tuli, Rohan & Soneji, Hitesh Narayan & Churi, Prathamesh, 2022. "PixAdapt: A novel approach to adaptive image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008098
    DOI: 10.1016/j.chaos.2022.112628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Du, Xiaohui, 2022. "Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Kumar, Krishna & Roy, Satyabrata & Rawat, Umashankar & Malhotra, Shashwat, 2022. "IEHC: An efficient image encryption technique using hybrid chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Chengye & Wang, Lin, 2023. "A visual DNA compilation of Rössler system and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Borghi, Giacomo & Grassi, Sara & Pareschi, Lorenzo, 2023. "Consensus based optimization with memory effects: Random selection and applications," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingye Huang & Linqing Huang & Shuting Cai & Xiaoming Xiong & Hui Zhang, 2023. "On a Symmetric Image Cryptosystem Based on a Novel One-Dimensional Chaotic System and Banyan Network," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
    2. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Contreras-Reyes, Javier E. & Kharazmi, Omid, 2023. "Belief Fisher–Shannon information plane: Properties, extensions, and applications to time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Liu, Xilin & Tong, Xiaojun & Zhang, Miao & Wang, Zhu, 2023. "A highly secure image encryption algorithm based on conservative hyperchaotic system and dynamic biogenetic gene algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "A new multi-wing chaotic attractor with unusual variation in the number of wings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Ziqi Zhou & Xuemei Xu & Zhaohui Jiang & Kehui Sun, 2023. "Multiple-Image Encryption Scheme Based on an N-Dimensional Chaotic Modular Model and Overlapping Block Permutation–Diffusion Using Newly Defined Operation," Mathematics, MDPI, vol. 11(15), pages 1-27, August.
    7. Lu, Jun & Zhang, Jiaxin & Hao, Dawei & Zhao, Ruoyu & Mou, Jun & Zhang, Yushu, 2024. "Text visualization encryption based on coordinate substitution and chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    8. Long, Guoqiang & Chai, Xiuli & Gan, Zhihua & Jiang, Donghua & He, Xin & Sun, Mengge, 2023. "Exploiting one-dimensional exponential Chebyshev chaotic map and matching embedding for visually meaningful image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Fudong Li & Jingru Zeng, 2023. "Multi-Scroll Attractor and Multi-Stable Dynamics of a Three-Dimensional Jerk System," Energies, MDPI, vol. 16(5), pages 1-12, March.
    10. Yu, Jinwei & Xie, Wei & Zhong, Zhenyu & Wang, Huan, 2022. "Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Huang, Yuanyuan & Huang, Huijun & Huang, Yunchang & Wang, Yinhe & Yu, Fei & Yu, Beier & Liu, Chenghao, 2024. "Asymptotic shape synchronization in three-dimensional chaotic systems and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    12. Li Shi & Xiangjun Li & Bingxue Jin & Yingjie Li, 2024. "A Chaos-Based Encryption Algorithm to Protect the Security of Digital Artwork Images," Mathematics, MDPI, vol. 12(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.