IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics096007792301144x.html
   My bibliography  Save this article

Generating multi-folded hidden Chua’s attractors: Two-case study

Author

Listed:
  • Wang, Ning
  • Cui, Mengkai
  • Yu, Xihong
  • Shan, Yufan
  • Xu, Quan

Abstract

In recent decades, Chua’s attractor has been taken as the classical paradigm for chaos demonstration, but it still presents some new results one after another. Hidden Chua’s attractor is a new category of attractor with basin of attraction that does not intersect with any system equilibrium point. The existing hidden Chua’s attractors have the simple single-hollow structure, and can only be generated from Chua’s system with both unstable and stable equilibria. In this paper, we report the generation of new hidden Chua’s attractors via the operation of complex number. Two cases of multi-folded hidden Chua’s attractors with only stable node-foci or with only unstable saddles are respectively generated from two seed Chua’s systems with double-scroll self-excited attractor or with single-hollow hidden attractor. The detailed system construction, equilibrium calculation, and numerical simulation are presented. Besides, the local basins of attraction of these new multi-folded hidden Chua’s attractors are visualized to show the evolutions under the operation of complex number. Finally, the physical experiment using field programmable gate array implemented these hidden attractors.

Suggested Citation

  • Wang, Ning & Cui, Mengkai & Yu, Xihong & Shan, Yufan & Xu, Quan, 2023. "Generating multi-folded hidden Chua’s attractors: Two-case study," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s096007792301144x
    DOI: 10.1016/j.chaos.2023.114242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792301144X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Mo & Wang, Ankai & Wang, Chao & Wu, Huagan & Bao, Bocheng, 2022. "DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Gomes, Iacyel & Korneta, Wojciech & Stavrinides, Stavros G. & Picos, Rodrigo & Chua, Leon O., 2023. "Experimental observation of chaotic hysteresis in Chua's circuit driven by slow voltage forcing," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Xu, Quan & Tan, Xiao & Zhu, Dong & Bao, Han & Hu, Yihua & Bao, Bocheng, 2020. "Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
    7. Wang, Xiaoyuan & Gao, Meng & Iu, Herbert Ho-Ching & Wang, Chunhua, 2022. "Tri-valued memristor-based hyper-chaotic system with hidden and coexistent attractors," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Echenausía-Monroy, J.L. & Gilardi-Velázquez, H.E. & Wang, Ning & Jaimes-Reátegui, R. & García-López, J.H. & Huerta-Cuellar, G., 2022. "Multistability route in a PWL multi-scroll system through fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Wang, Ning & Xu, Dan & Li, Ze & Xu, Quan, 2023. "A general configuration for nonlinear circuit employing current-controlled nonlinearity: Application in Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Bao, Bocheng & Chen, Liuhui & Bao, Han & Chen, Mo & Xu, Quan, 2024. "Bifurcations to bursting oscillations in memristor-based FitzHugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Wu, Chaojun & Xiong, Linhai & Yang, Ningning, 2024. "Modeling and dynamics analysis of a novel fractional-order meminductive multi-stable chaotic circuit and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    7. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    9. Li, Fangyuan & Chen, Zhuguan & Bao, Han & Bai, Lianfa & Bao, Bocheng, 2024. "Chaos and bursting patterns in two-neuron Hopfield neural network and analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    10. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    11. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Wang, Ning & Xu, Dan & Kuznetsov, N.V. & Bao, Han & Chen, Mo & Xu, Quan, 2023. "Experimental observation of hidden Chua’s attractor," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    16. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
    17. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    19. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    20. Mo Chen & Yang Feng & Han Bao & Bocheng Bao & Huagan Wu & Quan Xu, 2019. "Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity," Complexity, Hindawi, vol. 2019, pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s096007792301144x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.