IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922003496.html
   My bibliography  Save this article

Path-based multi-sources localization in multiplex networks

Author

Listed:
  • Cheng, Le
  • Li, Xianghua
  • Han, Zhen
  • Luo, Tengyun
  • Ma, Lianbo
  • Zhu, Peican

Abstract

With the prosperity of modern technology, propagation phenomena of diverse information become universal nowadays. Nevertheless, spreading of malicious information will inevitably bring undesired harm or economic losses. These spreading phenomena are usually triggered by limited sources; therefore, it is of great significance to locate these sources to avoid further losses. With the emergence of various social platforms, social networks seem to be integrated. Hence, multiplex networks are desirable to mimic the properties of integrated social networks. Source localization problems on single-layer networks are studied by various scholars whereas less attention has been paid to corresponding problems on multiplex networks. Regarding this, we propose a source locating method in this manuscript, named path-based source localization on multiplex networks (PSLM). With the adoption of the source centrality theory, we apply a label iteration process in order to find nodes with the largest local labels which are regarded as the sources. Furthermore, high uncertainty of spreading path will be incurred by the low spreading probability. Aiming to address such uncertainty, observers are deployed in advance to record the spreading directions. Then, extensive experiments are performed on selected datasets and we find PSLM outperforms the existing ones. Moreover, we also study the effects of various factors on the locating accuracy and find that the locating accuracy improves with the increase of the inter-layer spreading rate.

Suggested Citation

  • Cheng, Le & Li, Xianghua & Han, Zhen & Luo, Tengyun & Ma, Lianbo & Zhu, Peican, 2022. "Path-based multi-sources localization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003496
    DOI: 10.1016/j.chaos.2022.112139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Peican & Wang, Xing & Zhi, Qiang & Ma, Jiezhong & Guo, Yangming, 2018. "Analysis of epidemic spreading process in multi-communities," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 231-237.
    2. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    3. Paluch, Robert & Gajewski, Łukasz G. & Suchecki, Krzysztof & Hołyst, Janusz A., 2021. "Impact of interactions between layers on source localization in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Su, Zhen & Liu, Fanzhen & Gao, Chao & Gao, Shupeng & Li, Xianghua, 2018. "Inferring infection rate based on observations in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 170-176.
    5. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    6. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhipeng & Zhang, Shuguang & Hu, Jun & Dai, Fei, 2024. "An adaptive time series segmentation algorithm based on visibility graph and particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Li, Qi & Cheng, Le & Wang, Wei & Li, Xianghua & Li, Shudong & Zhu, Peican, 2023. "Influence maximization through exploring structural information," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Yan, Li & Cao, Huiying & Gao, Chao & Wang, Zhen & Li, Xuelong, 2023. "Mining of book-loan behavior based on coupling relationship analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    2. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    4. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Ai, Jun & He, Tao & Su, Zhan, 2023. "Identifying influential nodes in complex networks based on resource allocation similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    6. Meliksah Turker & Haluk O. Bingol, 2023. "Multi-layer network approach in modeling epidemics in an urban town," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-13, February.
    7. Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    8. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    10. Yan, Li & Cao, Huiying & Gao, Chao & Wang, Zhen & Li, Xuelong, 2023. "Mining of book-loan behavior based on coupling relationship analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    11. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    12. Ren, Baoan & Zhang, Yu & Chen, Jing & Shen, Lincheng, 2019. "Efficient network disruption under imperfect information: The sharpening effect of network reconstruction with no prior knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 196-207.
    13. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    14. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    15. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    16. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    17. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    18. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    19. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    20. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.