IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v442y2023ics0096300322007895.html
   My bibliography  Save this article

Influence maximization through exploring structural information

Author

Listed:
  • Li, Qi
  • Cheng, Le
  • Wang, Wei
  • Li, Xianghua
  • Li, Shudong
  • Zhu, Peican

Abstract

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.

Suggested Citation

  • Li, Qi & Cheng, Le & Wang, Wei & Li, Xianghua & Li, Shudong & Zhu, Peican, 2023. "Influence maximization through exploring structural information," Applied Mathematics and Computation, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007895
    DOI: 10.1016/j.amc.2022.127721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Yuanzhi Yang & Lei Yu & Xing Wang & Siyi Chen & You Chen & Yipeng Zhou, 2020. "A novel method to identify influential nodes in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-14, February.
    3. Wang, Jia-zeng & Liu, Zeng-rong & Xu, Jianhua, 2007. "Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 715-721.
    4. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    5. He, Qiang & Wang, Xingwei & Lei, Zhencheng & Huang, Min & Cai, Yuliang & Ma, Lianbo, 2019. "TIFIM: A Two-stage Iterative Framework for Influence Maximization in Social Networks," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 338-352.
    6. Cheng, Le & Li, Xianghua & Han, Zhen & Luo, Tengyun & Ma, Lianbo & Zhu, Peican, 2022. "Path-based multi-sources localization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhipeng & Zhang, Shuguang & Hu, Jun & Dai, Fei, 2024. "An adaptive time series segmentation algorithm based on visibility graph and particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    4. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Liu, Jia-Bao & Zheng, Ya-Qian & Lee, Chien-Chiang, 2024. "Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory," Applied Energy, Elsevier, vol. 357(C).
    6. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Wu, Yanlei & Yang, Yang & Jiang, Fei & Jin, Shuyuan & Xu, Jin, 2014. "Coritivity-based influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 467-480.
    8. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Wang, Longjian & Zheng, Shaoya & Wang, Yonggang & Wang, Longfei, 2021. "Identification of critical nodes in multimodal transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    11. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    12. Hajarathaiah, Koduru & Enduri, Murali Krishna & Anamalamudi, Satish, 2022. "Efficient algorithm for finding the influential nodes using local relative change of average shortest path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    13. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    14. Cai Gao & Xin Lan & Xiaoge Zhang & Yong Deng, 2013. "A Bio-Inspired Methodology of Identifying Influential Nodes in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    15. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Duan-Bing Chen & Hui Gao & Linyuan Lü & Tao Zhou, 2013. "Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    17. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    18. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    19. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    20. Mao, Fubing & Ma, Lijia & He, Qiang & Xiao, Gaoxi, 2020. "Match making in complex social networks," Applied Mathematics and Computation, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.