IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp43-48.html
   My bibliography  Save this article

Hurst exponent estimation of self-affine time series using quantile graphs

Author

Listed:
  • Campanharo, Andriana S.L.O.
  • Ramos, Fernando M.

Abstract

In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises.

Suggested Citation

  • Campanharo, Andriana S.L.O. & Ramos, Fernando M., 2016. "Hurst exponent estimation of self-affine time series using quantile graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 43-48.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:43-48
    DOI: 10.1016/j.physa.2015.09.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008377
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ping & Wang, Bing-Hong, 2007. "Extracting hidden fluctuation patterns of Hang Seng stock index from network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 519-526.
    2. Andriana S L O Campanharo & M Irmak Sirer & R Dean Malmgren & Fernando M Ramos & Luís A Nunes Amaral, 2011. "Duality between Time Series and Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    3. Yang, Yue & Yang, Huijie, 2008. "Complex network-based time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1381-1386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serinaldi, Francesco & Kilsby, Chris G., 2016. "Irreversibility and complex network behavior of stream flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 585-600.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    4. Andriana S L O Campanharo & M Irmak Sirer & R Dean Malmgren & Fernando M Ramos & Luís A Nunes Amaral, 2011. "Duality between Time Series and Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    5. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    6. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    7. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    8. Liu, Chuang & Zhou, Wei-Xing & Yuan, Wei-Kang, 2010. "Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2675-2681.
    9. Carlo Mari & Cristiano Baldassari, 2023. "Optimization of mixture models on time series networks encoded by visibility graphs: an analysis of the US electricity market," Computational Management Science, Springer, vol. 20(1), pages 1-23, December.
    10. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    11. Baggio, Rodolfo, 2015. "Looking into the future of complex dynamic systems," MPRA Paper 65549, University Library of Munich, Germany.
    12. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    13. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    14. Schmidt, Jonas & Köhne, Daniel, 2023. "A simple scalable linear time algorithm for horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    15. Gonçalves, Bruna Amin & Carpi, Laura & Rosso, Osvaldo A. & Ravetti, Martín G., 2016. "Time series characterization via horizontal visibility graph and Information Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 93-102.
    16. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    17. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    18. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    19. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    20. Pierini, Jorge O. & Lovallo, Michele & Telesca, Luciano, 2012. "Visibility graph analysis of wind speed records measured in central Argentina," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5041-5048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:43-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.