IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922002727.html
   My bibliography  Save this article

Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation

Author

Listed:
  • Wei, Peng-Fei
  • Long, Chun-Xiao
  • Zhu, Chen
  • Zhou, Yi-Ting
  • Yu, Hui-Zhen
  • Ren, Bo

Abstract

The (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani (KdVSKR) equation which consists of the KdV equation and the SK equation is studied. Soliton molecules of the KdVSKR equation are given by means of the velocity resonance mechanism. By selecting the values of the phases, soliton molecule bounded by the three solitons is transferred to other type of the soliton molecule bounded by the asymmetric soliton and one soliton. Multi-breather solutions are derived by selecting the complex conjugate relations in the parameters. The relative positions for the maximum amplitudes of the multi-breathers can adjust with different values of the phases. It demonstrates that the phases of the multi-soliton solutions play an important effect in certain phenomena. In the meanwhile, the interactions between a soliton molecule and one-order breather, and between a soliton molecule and one-order lump of the KdVSKR equation are analyzed. The interactions are an elastic collisions by both the analytical and graphical ways.

Suggested Citation

  • Wei, Peng-Fei & Long, Chun-Xiao & Zhu, Chen & Zhou, Yi-Ting & Yu, Hui-Zhen & Ren, Bo, 2022. "Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002727
    DOI: 10.1016/j.chaos.2022.112062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Yue-Jin & Wu, Jian-Wen & Lin, Ji, 2022. "Nondegenerate N-soliton solutions for Manakov system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Peng-Fei Wei & Hao-Bo Zhang & Ye Liu & Si-Yu Lin & Rui-Yu Chen & Zi-Yi Xu & Wan-Li Wang & Bo Ren, 2024. "Multi-Soliton, Soliton–Cnoidal, and Lump Wave Solutions for the Supersymmetric Boussinesq Equation," Mathematics, MDPI, vol. 12(13), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    2. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    3. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    5. Sang, Xue & Dong, Huanhe & Fang, Yong & Liu, Mingshuo & Kong, Yuan, 2024. "Soliton, breather and rogue wave solutions of the nonlinear Schrödinger equation via Darboux transformation on a time–space scale," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Li, Lingfei & Yan, Yongsheng & Xie, Yingying, 2022. "Rational solutions with non-zero offset parameters for an extended (3 + 1)-dimensional BKP-Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    7. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Xu, Yun-Jie, 2023. "Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Zhao, Yi-Di & Wang, Yu-Feng & Yang, Sheng-Xiong & Zhang, Xi & Chen, Yi-Xin, 2024. "Soliton, breather and rogue wave solutions of the higher-order modified Gerdjikov–Ivanov equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    10. Chen, Yi-Xiang, 2024. "(3+1)-dimensional partially nonlocal ring-like bright-dark monster waves," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    12. Yue-jun Deng & Rui-yu Jia & Ji Lin, 2019. "Lump and Mixed Rogue-Soliton Solutions of the (2 + 1)-Dimensional Mel’nikov System," Complexity, Hindawi, vol. 2019, pages 1-9, November.
    13. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    14. Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    15. He, Chun-Hui & Liu, Chao, 2023. "Variational principle for singular waves," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. El-Tantawy, S.A. & Salas, Alvaro H. & Alyousef, Haifa A. & Alharthi, M.R., 2022. "Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    17. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Li, Ji-tao & Dai, Chao-Qing, 2023. "Annular rogue waves in whispering gallery mode optical resonators," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Chen, Yi-Xiang, 2023. "Vector peregrine composites on the periodic background in spin–orbit coupled Spin-1 Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    20. Lou, Yu & Zhang, Yi, 2022. "Breathers on elliptic function background for a generalized nonlinear Schrödinger equation with higher-order terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 22-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.