IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000571.html
   My bibliography  Save this article

On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings

Author

Listed:
  • Du, Tingsong
  • Zhou, Taichun

Abstract

In the present study, over a rectangle from the plane R2, we define and develop the conceptions of the interval-valued fractional double integrals having exponential kernels, from which we exploit Hermite–Hadamard, Fejér–Hermite–Hadamard, as well as Pachpatte type inclusion relations regarding the interval-valued co-ordinated convex mappings. These inclusion relations can be viewed as certain substantial generalizations of the previously reported findings. To identify the correctness of the inclusion relations constructed in this work, we also provide three examples regarding the interval-valued co-ordinated convex mappings.

Suggested Citation

  • Du, Tingsong & Zhou, Taichun, 2022. "On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000571
    DOI: 10.1016/j.chaos.2022.111846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüseyin Budak & Muhammad Aamir Ali & Meliha Tarhanaci, 2020. "Some New Quantum Hermite–Hadamard-Like Inequalities for Coordinated Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 899-910, September.
    2. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    3. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Singh, D. & Dar, B.A. & Kim, D.S., 2016. "KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions," European Journal of Operational Research, Elsevier, vol. 254(1), pages 29-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Bilal Khan & Eze R. Nwaeze & Cheng-Chi Lee & Hatim Ghazi Zaini & Der-Chyuan Lou & Khalil Hadi Hakami, 2023. "Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates," Mathematics, MDPI, vol. 11(24), pages 1-27, December.
    2. Khan, Muhammad Bilal & Santos-García, Gustavo & Noor, Muhammad Aslam & Soliman, Mohamed S., 2022. "Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Muhammad Bilal Khan & Ali Althobaiti & Cheng-Chi Lee & Mohamed S. Soliman & Chun-Ta Li, 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities," Mathematics, MDPI, vol. 11(13), pages 1-23, June.
    4. Peng, Yu & Özcan, Serap & Du, Tingsong, 2024. "Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Muhammad Bilal Khan & Jorge E. Macías-Díaz & Savin Treanțǎ & Mohamed S. Soliman, 2022. "Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    6. Çi̇ri̇ş, Sümeyye Ermeydan & Yildirim, Hüseyin, 2024. "Hermite–Hadamard inequalities for generalized σ−conformable integrals generated by co-ordinated functions," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Du, Tingsong & Yuan, Xiaoman, 2023. "On the parameterized fractal integral inequalities and related applications," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Yu, Shuhong & Zhou, Yunxiu & Du, Tingsong, 2022. "Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Djaoue, Seraphin & Guilsou Kolaye, Gabriel & Abboubakar, Hamadjam & Abba Ari, Ado Adamou & Damakoa, Irepran, 2020. "Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Babu, N. Ramesh & Balasubramaniam, P., 2023. "Master–slave synchronization for glucose–insulin metabolism of type-1 diabetic Mellitus model based on new fractal–fractional order derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 282-301.
    7. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    9. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    11. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Khan, Muhammad Bilal & Santos-García, Gustavo & Noor, Muhammad Aslam & Soliman, Mohamed S., 2022. "Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    16. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    20. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.