IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics096007792100758x.html
   My bibliography  Save this article

Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model

Author

Listed:
  • Sabir, Zulqurnain
  • Raja, Muhammad Asif Zahoor
  • Guirao, Juan L.G.
  • Saeed, Tareq

Abstract

The aim of this study is to design a singular fractional order pantograph differential model by using the typical form of the Lane-Emden model. The necessary details of the singular-point, fractional order and shape factor of the designed model are also provided. The numerical solutions of the designed model have been presented using the combination of the fractional Meyer wavelet (FMW) neural networks (NNs) modeling and optimization of global search with genetic algorithm (GA) supported with local search of sequential quadratic programming (SQP), i.e., FMWNN-GASQP. The strength of FMWNN is employed to design an objective function using the differential model along with its initial conditions of the singular fractional order pantograph model. The optimization of this objective function is performed using the integrated competence of GA-SQP. The verification, perfection and authentication of the singular fractional order pantograph model using fractional Meyer computing solver is observed for different cases through comparative studies from the available exact solutions which endorsed its robustness, convergence and stability. Moreover, the statistics observation with necessary explanations further authenticate the performance of the FMWNN-GASQP in terms of accuracy and reliability.

Suggested Citation

  • Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Guirao, Juan L.G. & Saeed, Tareq, 2021. "Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100758x
    DOI: 10.1016/j.chaos.2021.111404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100758X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabir, Zulqurnain & Wahab, Hafiz Abdul & Umar, Muhammad & Sakar, Mehmet Giyas & Raja, Muhammad Asif Zahoor, 2020. "Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 1-14.
    2. Zulqurnain Sabir & Hatıra Günerhan & Juan L. G. Guirao, 2020. "On a New Model Based on Third-Order Nonlinear Multisingular Functional Differential Equations," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, February.
    3. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    4. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    5. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    6. Amin, Rohul & Shah, Kamal & Asif, Muhammad & Khan, Imran, 2021. "A computational algorithm for the numerical solution of fractional order delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    7. Umar, Muhammad & Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Aguilar, J.F. Gómez & Amin, Fazli & Shoaib, Muhammad, 2021. "Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 241-253.
    8. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Mohammad, Mutaz & Trounev, Alexander, 2020. "On the dynamical modeling of COVID-19 involving Atangana–Baleanu fractional derivative and based on Daubechies framelet simulations," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Khalique, Chaudry Masood & Unlu, Canan, 2021. "Neuro-evolution computing for nonlinear multi-singular system of third order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 799-812.
    11. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Sabir, Zulqurnain & Saoud, Sahar & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Arbi, Adnène, 2020. "Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 534-548.
    13. Ezz-Eldien, S.S., 2018. "On solving systems of multi-pantograph equations via spectral tau method," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 63-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Gang-Zhou & Fang, Yin & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naz, Sidra & Raja, Muhammad Asif Zahoor & Kausar, Aneela & Zameer, Aneela & Mehmood, Ammara & Shoaib, Muhammad, 2022. "Dynamics of nonlinear cantilever piezoelectric–mechanical system: An intelligent computational approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 88-113.
    2. Jadoon, Ihtesham & Raja, Muhammad Asif Zahoor & Junaid, Muhammad & Ahmed, Ashfaq & Rehman, Ata ur & Shoaib, Muhammad, 2021. "Design of evolutionary optimized finite difference based numerical computing for dust density model of nonlinear Van-der Pol Mathieu’s oscillatory systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 444-470.
    3. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Altamirano, Gilder Cieza & Zhang, Yu-Dong & Le, Dac-Nhuong, 2021. "Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane–Emden pantograph models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 87-101.
    4. Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Rizk-Allah, Rizk M. & Hassanien, Aboul Ella & Snášel, Václav, 2022. "A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem," Energy, Elsevier, vol. 254(PC).
    7. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    8. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    9. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    10. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    11. Hani Albalawi & Abdul Wadood & Herie Park, 2024. "Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power," Mathematics, MDPI, vol. 12(21), pages 1-24, October.
    12. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    13. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    14. Donghui Wang & Chunming Liu, 2019. "Combination Optimization Configuration Method of Capacitance and Resistance Devices for Suppressing DC Bias in Transformers," Energies, MDPI, vol. 12(9), pages 1-13, May.
    15. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    16. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    17. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    18. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    19. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    20. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100758x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.