IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007244.html
   My bibliography  Save this article

Football: Discovering elapsing-time bias in the science of success

Author

Listed:
  • Galli, L.
  • Galvan, G.
  • Levato, T.
  • Liti, C.
  • Piccialli, V.
  • Sciandrone, M.

Abstract

One of the fundamental topics in sports analytics is the science of success, i.e., the study of the correlation between players’ performances and their success. This is a very challenging task especially in the case of team sports, among which football is a prominent example. This paper is concerned with uncovering a dangerous bias that is present in most of the approaches proposed in the literature that apply statistical techniques or machine learning models to study the correlation between team performances and match outcome. In particular, we find out that players’ behavior on a time interval is more and more correlated with the match outcome as the 90 minutes elapse. As an extreme example, we show that we can predict the output of a match with high confidence simply by looking at the last 15 minutes of the game. We call this effect elapsing-time bias. We conduct a quantitative analysis that proves the existence of this phenomenon and shows its consequences. We then propose a novel way to address the problem. Namely, we design a new machine learning task that is not affected by elapsing-time bias. All the experiments are conducted on a large corpus of finely annotated football matches of European leagues.

Suggested Citation

  • Galli, L. & Galvan, G. & Levato, T. & Liti, C. & Piccialli, V. & Sciandrone, M., 2021. "Football: Discovering elapsing-time bias in the science of success," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007244
    DOI: 10.1016/j.chaos.2021.111370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel-Ángel Gómez & Ana DelaSerna & Corrado Lupo & Jaime Sampaio, 2014. "Effects of Situational Variables and Starting Quarter Score in the outcome of elite women’s water polo game quarters," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 14(1), pages 73-83, April.
    2. Hannes Lepschy & Hagen Wäsche & Alexander Woll, 2020. "Success factors in football: an analysis of the German Bundesliga," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 20(2), pages 150-164, March.
    3. Luca Pappalardo & Paolo Cintia, 2018. "Quantifying The Relation Between Performance And Success In Soccer," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-30, May.
    4. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    5. Loeffelholz Bernard & Bednar Earl & Bauer Kenneth W, 2009. "Predicting NBA Games Using Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(1), pages 1-17, January.
    6. Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Chunyang Huang & Shaoliang Zhang, 2023. "Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players," Papers 2311.04599, arXiv.org, revised Nov 2023.
    3. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    5. Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
    6. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    7. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    8. Laura M S de Jong & Paul B Gastin & Maia Angelova & Lyndell Bruce & Dan B Dwyer, 2020. "Technical determinants of success in professional women’s soccer: A wider range of variables reveals new insights," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.
    9. Manlio Migliorati & Marica Manisera & Paola Zuccolotto, 2023. "Integration of model-based recursive partitioning with bias reduction estimation: a case study assessing the impact of Oliver’s four factors on the probability of winning a basketball game," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 271-293, March.
    10. David John A. & Pasteur R. Drew & Ahmad M. Saif & Janning Michael C., 2011. "NFL Prediction using Committees of Artificial Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-15, May.
    11. Federico Fioravanti & Fernando Delbianco & Fernando Tohmé, 2023. "The relative importance of ability, luck and motivation in team sports: a Bayesian model of performance in the English Rugby Premiership," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 715-731, September.
    12. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
    13. Wei Gu & Thomas L. Saaty & Rozann Whitaker, 2016. "Expert System for Ice Hockey Game Prediction: Data Mining with Human Judgment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 763-789, July.
    14. Hubáček, Ondřej & Šourek, Gustav & Železný, Filip, 2019. "Exploiting sports-betting market using machine learning," International Journal of Forecasting, Elsevier, vol. 35(2), pages 783-796.
    15. Fry, John & Serbera, Jean-Philippe & Wilson, Rob, 2021. "Managing performance expectations in association football," Journal of Business Research, Elsevier, vol. 135(C), pages 445-453.
    16. Daniel Goller & Michael C. Knaus & Michael Lechner & Gabriel Okasa, 2021. "Predicting match outcomes in football by an Ordered Forest estimator," Chapters, in: Ruud H. Koning & Stefan Kesenne (ed.), A Modern Guide to Sports Economics, chapter 22, pages 335-355, Edward Elgar Publishing.
    17. Harleen Kaur & Shafqat Ul Ahsaan & Bhavya Alankar & Victor Chang, 2021. "A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets," Information Systems Frontiers, Springer, vol. 23(6), pages 1417-1429, December.
    18. Riccardo Ievoli & Aldo Gardini & Lucio Palazzo, 2023. "The role of passing network indicators in modeling football outcomes: an application using Bayesian hierarchical models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 153-175, March.
    19. Julen Castellano & Miguel Pic, 2019. "Identification and Preference of Game Styles in LaLiga Associated with Match Outcomes," IJERPH, MDPI, vol. 16(24), pages 1-13, December.
    20. Wheatcroft Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 273-287, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.