Football: Discovering elapsing-time bias in the science of success
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2021.111370
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Miguel-Ángel Gómez & Ana DelaSerna & Corrado Lupo & Jaime Sampaio, 2014. "Effects of Situational Variables and Starting Quarter Score in the outcome of elite women’s water polo game quarters," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 14(1), pages 73-83, April.
- Hannes Lepschy & Hagen Wäsche & Alexander Woll, 2020. "Success factors in football: an analysis of the German Bundesliga," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 20(2), pages 150-164, March.
- Luca Pappalardo & Paolo Cintia, 2018. "Quantifying The Relation Between Performance And Success In Soccer," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-30, May.
- Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
- Loeffelholz Bernard & Bednar Earl & Bauer Kenneth W, 2009. "Predicting NBA Games Using Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(1), pages 1-17, January.
- Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Wheatcroft Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 273-287, December.
- Chunyang Huang & Shaoliang Zhang, 2023. "Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players," Papers 2311.04599, arXiv.org, revised Nov 2023.
- Wheatcroft, Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," LSE Research Online Documents on Economics 111494, London School of Economics and Political Science, LSE Library.
- Leonardo Lamas & José Vitor Senatore & Gilbert Fellingham, 2020. "Two steps for scoring a point: Creating and converting opportunities in invasion team sports," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
- Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
- Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
- Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
- Fadi Thabtah & Li Zhang & Neda Abdelhamid, 2019. "NBA Game Result Prediction Using Feature Analysis and Machine Learning," Annals of Data Science, Springer, vol. 6(1), pages 103-116, March.
- Christoph Schlembach & Sascha L. Schmidt & Dominik Schreyer & Linus Wunderlich, 2020. "Forecasting the Olympic medal distribution during a pandemic: a socio-economic machine learning model," Papers 2012.04378, arXiv.org, revised Jun 2021.
- Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
- Koopman, Siem Jan & Lit, Rutger, 2019.
"Forecasting football match results in national league competitions using score-driven time series models,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
- Siem Jan (S.J.) Koopman & Rutger Lit, 2017. "Forecasting Football Match Results in National League Competitions Using Score-Driven Time Series Models," Tinbergen Institute Discussion Papers 17-062/III, Tinbergen Institute.
- Sergio Destefanis & Francesco Addesa & Giambattista Rossi, 2022. "The impact of COVID-19 on home advantage: a conditional order-m analysis of football clubs’ efficiency in the top-5 European leagues," Applied Economics, Taylor & Francis Journals, vol. 54(58), pages 6639-6655, December.
- Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
- Maurizio Carpita & Enrico Ciavolino & Paola Pasca, 2021. "Players’ Role-Based Performance Composite Indicators of Soccer Teams: A Statistical Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 815-830, August.
- Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
- Laura M S de Jong & Paul B Gastin & Maia Angelova & Lyndell Bruce & Dan B Dwyer, 2020. "Technical determinants of success in professional women’s soccer: A wider range of variables reveals new insights," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.
- Manlio Migliorati & Marica Manisera & Paola Zuccolotto, 2023. "Integration of model-based recursive partitioning with bias reduction estimation: a case study assessing the impact of Oliver’s four factors on the probability of winning a basketball game," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 271-293, March.
- David John A. & Pasteur R. Drew & Ahmad M. Saif & Janning Michael C., 2011. "NFL Prediction using Committees of Artificial Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-15, May.
More about this item
Keywords
Football; Science of success; Match analysis; Machine learning; Sports analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.