IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v21y2018i03n04ns021952591750014x.html
   My bibliography  Save this article

Quantifying The Relation Between Performance And Success In Soccer

Author

Listed:
  • LUCA PAPPALARDO

    (Department of Computer Science, University of Pisa, Italy2Institute of Information Sciences and Technologies (ISTI), CNR, Pisa, Italy)

  • PAOLO CINTIA

    (Department of Computer Science, University of Pisa, Italy2Institute of Information Sciences and Technologies (ISTI), CNR, Pisa, Italy)

Abstract

The availability of massive data about sports activities offers nowadays the opportunity to quantify the relation between performance and success. In this study, we analyze more than 6000 games and 10 million events in six European leagues and investigate this relation in soccer competitions. We discover that a team’s position in a competition’s final ranking is significantly related to its typical performance, as described by a set of technical features extracted from the soccer data. Moreover, we find that, while victory and defeats can be explained by the team’s performance during a game, it is difficult to detect draws by using a machine learning approach. We then simulate the outcomes of an entire season of each league only relying on technical data and exploiting a machine learning model trained on data from past seasons. The simulation produces a team ranking which is similar to the actual ranking, suggesting that a complex systems’ view on soccer has the potential of revealing hidden patterns regarding the relation between performance and success.

Suggested Citation

  • Luca Pappalardo & Paolo Cintia, 2018. "Quantifying The Relation Between Performance And Success In Soccer," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-30, May.
  • Handle: RePEc:wsi:acsxxx:v:21:y:2018:i:03n04:n:s021952591750014x
    DOI: 10.1142/S021952591750014X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S021952591750014X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S021952591750014X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Prinzie & D. Van Den Poel, 2007. "Random Multiclass Classification: Generalizing Random Forests to Random MNL and Random NB," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/469, Ghent University, Faculty of Economics and Business Administration.
    2. Dobson,Stephen & Goddard,John, 2011. "The Economics of Football," Cambridge Books, Cambridge University Press, number 9780521517140, January.
    3. Ben-Naim Eli & Vazquez Federico & Redner Sidney, 2006. "Parity and Predictability of Competitions," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(4), pages 1-14, October.
    4. Andreas Heuer & Oliver Rubner, 2014. "Optimizing the Prediction Process: From Statistical Concepts to the Case Study of Soccer," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    5. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura M S de Jong & Paul B Gastin & Maia Angelova & Lyndell Bruce & Dan B Dwyer, 2020. "Technical determinants of success in professional women’s soccer: A wider range of variables reveals new insights," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.
    2. Galli, L. & Galvan, G. & Levato, T. & Liti, C. & Piccialli, V. & Sciandrone, M., 2021. "Football: Discovering elapsing-time bias in the science of success," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Serafeim Moustakidis & Spyridon Plakias & Christos Kokkotis & Themistoklis Tsatalas & Dimitrios Tsaopoulos, 2023. "Predicting Football Team Performance with Explainable AI: Leveraging SHAP to Identify Key Team-Level Performance Metrics," Future Internet, MDPI, vol. 15(5), pages 1-18, May.
    5. Julen Castellano & Miguel Pic, 2019. "Identification and Preference of Game Styles in LaLiga Associated with Match Outcomes," IJERPH, MDPI, vol. 16(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorian Owen, 2014. "Measurement of competitive balance and uncertainty of outcome," Chapters, in: John Goddard & Peter Sloane (ed.), Handbook on the Economics of Professional Football, chapter 3, pages 41-59, Edward Elgar Publishing.
    2. Hvattum Lars Magnus, 2015. "Playing on artificial turf may be an advantage for Norwegian soccer teams," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(3), pages 183-192, September.
    3. Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.
    5. Demers Simon, 2015. "Riding a probabilistic support vector machine to the Stanley Cup," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(4), pages 205-218, December.
    6. Paul Bose & Eberhard Feess & Helge Mueller, 2022. "Favoritism towards High-Status Clubs: Evidence from German Soccer," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 38(2), pages 422-478.
    7. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    8. Stefan Szymanski, 2021. "On the Incidence of an Ad Valorem Tax: The Adoption of VAT in the UK and Cost Pass Through by English Football Clubs," De Economist, Springer, vol. 169(1), pages 37-61, February.
    9. Chowdhury, Subhasish M. & Jewell, Sarah & Singleton, Carl, 2024. "Can awareness reduce (and reverse) identity-driven bias in judgement? Evidence from international cricket," Journal of Economic Behavior & Organization, Elsevier, vol. 226(C).
    10. Csató, László, 2023. "How to avoid uncompetitive games? The importance of tie-breaking rules," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1260-1269.
    11. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    12. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    13. Maria Bolsinova & Gunter Maris & Abe D. Hofman & Han L. J. van der Maas & Matthieu J. S. Brinkhuis, 2022. "Urnings: A new method for tracking dynamically changing parameters in paired comparison systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 91-118, January.
    14. Brox, Enzo & Krieger, Tommy, 2022. "Birthplace diversity and team performance," Labour Economics, Elsevier, vol. 79(C).
    15. Kaori Naritaa & J .D. Tenaa & Claudio Detottoc, 2020. "What Makes the Ideal Profile of a New Manager in Times of Adversity? Evidence from Italian Serie A," Working Papers 202031, University of Liverpool, Department of Economics.
    16. Csató, László & Bodnár, Gergely, 2023. "Mérhetnénk jobban a csapatok erejét a Bajnokok Ligájában? Fontos megjegyzés az Európai Labdarúgó-szövetség számára [How to better measure team strength in the Champions League. An important message," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 813-827.
    17. Hua, Hsuan-Fu & Chang, Ching-Ju & Lin, Tse-Ching & Weng, Ruby Chiu-Hsing, 2024. "Rating players by Laplace’s approximation and dynamic modeling," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1152-1165.
    18. Besters, Lucas, 2018. "Economics of professional football," Other publications TiSEM d9e6b9b7-a17b-4665-9cca-1, Tilburg University, School of Economics and Management.
    19. Rodriguez Alvaro, 2011. "Computing the Probability of Winning a Competition with an Application to Horse Races," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-11, July.
    20. Martín A Rossi & Christian A Ruzzier, 2018. "Career Choices and the Evolution of the College Gender Gap," The World Bank Economic Review, World Bank, vol. 32(2), pages 307-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:21:y:2018:i:03n04:n:s021952591750014x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.