IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119319995.html
   My bibliography  Save this article

BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer

Author

Listed:
  • Toğaçar, Mesut
  • Özkurt, Kutsal Baran
  • Ergen, Burhan
  • Cömert, Zafer

Abstract

Breast cancer is one of the most commonly diagnosed cancer types in the woman and automatically classifying breast cancer histopathological images is an important task in computer-assisted pathology analysis. Statistics indicate that the breast cancer rate is about 12% in all cancer cases in the world. Also, approximately 25% of women have breast cancer. Therefore, rapid and accurate analysis of breast cancer images is extremely important for diagnosis. Recently, deep learning models have been used in preference for this purpose. In short, the most important reason why we use a deep learning model for the diagnosis of breast cancer is can give faster and more accurate results than existing machine learning based methods. In this study, we come up with a novel deep learning model developed based on a convolutional neural network. The success of the classification was increased by using the proposed model named as BreastNet. The general structure of the BreastNet model is a residual architecture built on attention modules. Each image data is processed by the augmentation techniques before applying it as input to the model. With augmentation techniques, each image is processed one by one and transferred to BreastNet. There is no increase in the number of data. The features of each image are changed using some augmentation techniques, such as flip, shift, brightness change and rotation. Then, each image that comes to the model performs the selection and processing of important key regions of the image via through attention modules. Also, a more stable and accurate classification of the data is performed by using the hypercolumn technique in the model. Other parts of the BreastNet model consist of convolutional, pooling, residual and dense blocks. As a result, 98.80% classification success was achieved with the proposed model. The success rate of the proposed model was better than the success rates of AlexNet, VGG-16 and VGG-19 models performed on the same data set. In addition, the results obtained in this study yielded better results than the other studies that use the current BreakHis dataset.

Suggested Citation

  • Toğaçar, Mesut & Özkurt, Kutsal Baran & Ergen, Burhan & Cömert, Zafer, 2020. "BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319995
    DOI: 10.1016/j.physa.2019.123592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319995
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanna Kjellin & Henrik Johansson & Anders Höög & Janne Lehtiö & Per-Johan Jakobsson & Magnus Kjellman, 2014. "Differentially Expressed Proteins in Malignant and Benign Adrenocortical Tumors," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canayaz, Murat, 2021. "C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Toğaçar, Mesut & Cömert, Zafer & Ergen, Burhan, 2021. "Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319995. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.