On stability and event trigger control of fractional neural networks by fractional non-autonomous Halanay inequalities
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.113418
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Liu, Xiang & Wang, Peiguang & Anderson, Douglas R., 2022. "On stability and feedback control of discrete fractional order singular systems with multiple time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Huanan & Huang, Chengdai & Liu, Heng & Cao, Jinde, 2023. "Detecting bifurcations in a fractional-order neural network with nonidentical delays via Cramer’s rule," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nosrati, Komeil & Belikov, Juri & Tepljakov, Aleksei & Petlenkov, Eduard, 2023. "Extended fractional singular kalman filter," Applied Mathematics and Computation, Elsevier, vol. 448(C).
- Rui Kang & Shang Gao, 2022. "Stabilization for Stochastic Coupled Kuramoto Oscillators via Nonlinear Distributed Feedback Control," Mathematics, MDPI, vol. 10(18), pages 1-9, September.
- Di, Ying & Zhang, Jin-Xi & Zhang, Xuefeng, 2023. "Robust stabilization of descriptor fractional-order interval systems with uncertain derivative matrices," Applied Mathematics and Computation, Elsevier, vol. 453(C).
- Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Wei, Yiheng & Su, Nan & Zhao, Linlin & Cao, Jinde, 2023. "LMI based stability condition for delta fractional order system with sector approximation," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
More about this item
Keywords
Fractional Halanay inequality; Neural networks; Asymptotic stability; Event trigger control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.