IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921001636.html
   My bibliography  Save this article

Mean square exponential stability for stochastic memristor-based neural networks with leakage delay

Author

Listed:
  • Wang, Fen
  • Chen, Yuanlong

Abstract

Under the framework of Filippov solutions, the issues of mean square exponential stability for stochastic memristor-based neural networks with leakage delay in this paper are studied. By constructing a suitable Lyapunov–Krasovskii functional and using Itô,s differential formula, Lemma of Schur complement and linear matrix inequality technique, the criteria are derived. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of the MATLAB toolbox. Compared with previous results, the activation function's boundedness, differentiability and monotonicity are not required. Finally, three numerical examples are provided to illustrate the effectiveness of the proposed results.

Suggested Citation

  • Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001636
    DOI: 10.1016/j.chaos.2021.110811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karthick, S.A. & Sakthivel, R. & Ma, Y.K. & Leelamani, A., 2020. "Observer based guaranteed cost control for Markovian jump stochastic neutral-type neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Yuan, Manman & Wang, Weiping & Luo, Xiong & Liu, Linlin & Zhao, Wenbing, 2018. "Finite-time anti-synchronization of memristive stochastic BAM neural networks with probabilistic time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 244-260.
    3. Cao, Yang & Samidurai, R. & Sriraman, R., 2019. "Robust passivity analysis for uncertain neural networks with leakage delay and additive time-varying delays by using general activation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 57-77.
    4. Manivannan, R. & Samidurai, R. & Cao, Jinde & Alsaedi, Ahmed & Alsaadi, Fuad E., 2018. "Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 433-445.
    5. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    6. Abdelaziz, Meryem & Chérif, Farouk, 2020. "Piecewise asymptotic almost periodic solutions for impulsive fuzzy Cohen–Grossberg neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    8. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    9. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    10. Li, Ruoxia & Cao, Jinde, 2016. "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 54-69.
    11. Suntonsinsoungvon, E. & Udpin, S., 2020. "Exponential stability of discrete-time uncertain neural networks with multiple time-varying leakage delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 233-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Xiang, Jianglian & Ren, Junwu & Tan, Manchun, 2022. "Stability analysis for memristor-based stochastic multi-layer neural networks with coupling disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    2. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    4. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    6. Zhang, Shuai & Yang, Yongqing & Sui, Xin & Xu, Xianyu, 2019. "Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Li, Yongkun & Wang, Xiaohui, 2021. "Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Sang, Hong & Zhao, Ying & Wang, Peng & Wang, Yuzhong & Yu, Shuanghe & Dimirovski, Georgi M., 2023. "Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    11. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    14. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    15. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    16. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    19. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.