Piecewise asymptotic almost periodic solutions for impulsive fuzzy Cohen–Grossberg neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2019.109575
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Amdouni, Manel & Chérif, Farouk, 2018. "The pseudo almost periodic solutions of the new class of Lotka–Volterra recurrent neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 79-88.
- Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdelaziz, Meryem & Chérif, Farouk, 2024. "Finite-Time Synchronization and Exponential lag synchronization of quaternion-valued inertial fuzzy Cohen–Grossberg neural networks with impulsives and mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Li, Yongkun & Wang, Xiaohui, 2021. "Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
- Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Stamov, Gani & Stamova, Ivanka & Martynyuk, Anatoliy & Stamov, Trayan, 2021. "Almost periodic dynamics in a new class of impulsive reaction–diffusion neural networks with fractional-like derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jian, Jigui & Wang, Baoxian, 2015. "Global Lagrange stability for neutral-type Cohen–Grossberg BAM neural networks with mixed time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 116(C), pages 1-25.
- Weide Liu & Jianliang Huang & Qinghe Yao, 2021. "Stability Analysis of Pseudo-Almost Periodic Solution for a Class of Cellular Neural Network with D Operator and Time-Varying Delays," Mathematics, MDPI, vol. 9(16), pages 1-24, August.
- Manel Amdouni & Jehad Alzabut & Mohammad Esmael Samei & Weerawat Sudsutad & Chatthai Thaiprayoon, 2022. "A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
More about this item
Keywords
Piecewise asymptotic almost periodic solutions-global exponential stability-impulsive-fuzzy Cohen–Grossberg neural networks;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.