IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v338y2018icp346-362.html
   My bibliography  Save this article

Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks

Author

Listed:
  • Chang, Wenting
  • Zhu, Song
  • Li, Jinyu
  • Sun, Kaili

Abstract

This paper presents the theoretical results about global Mittag–Leffler stabilization for a class of fractional-order complex-valued memristive neural networks with the designed two types of control rules. As the extension of fractional-order real-valued memristive neural networks, fractional-order complex-valued memristive neural networks have complex-valued states, synaptic weights, and the activation functions. By utilizing the set-valued maps, a generalized fractional derivative inequality as well as fractional-order differential inclusions, several stabilization criteria for global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks are established. A numerical example is provided here to illustrate our theoretical results.

Suggested Citation

  • Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
  • Handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:346-362
    DOI: 10.1016/j.amc.2018.06.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318305307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.06.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.
    2. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    3. Xiao, Jianying & Zhong, Shouming, 2018. "Extended dissipative conditions for memristive neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 145-163.
    4. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    5. James M. Tour & Tao He, 2008. "The fourth element," Nature, Nature, vol. 453(7191), pages 42-43, May.
    6. Guo, Runan & Zhang, Ziye & Liu, Xiaoping & Lin, Chong, 2017. "Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 100-117.
    7. Chen, Xiaofeng & Zhao, Zhenjiang & Song, Qiankun & Hu, Jin, 2017. "Multistability of complex-valued neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 18-35.
    8. Li, Ruoxia & Cao, Jinde, 2016. "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 54-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    2. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    3. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    4. Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    6. Tang, Tianfeng & Qin, Gang & Zhang, Bin & Cheng, Jun & Cao, Jinde, 2024. "Event-based asynchronous state estimation for Markov jump memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    7. Pratap, A. & Raja, R. & Cao, J. & Rihan, Fathalla A. & Seadawy, Aly R., 2020. "Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Zhang, Yanlin & Deng, Shengfu, 2019. "Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 176-190.
    9. Grienggrai Rajchakit & Pharunyou Chanthorn & Pramet Kaewmesri & Ramalingam Sriraman & Chee Peng Lim, 2020. "Global Mittag–Leffler Stability and Stabilization Analysis of Fractional-Order Quaternion-Valued Memristive Neural Networks," Mathematics, MDPI, vol. 8(3), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    3. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    4. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    7. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    8. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Sakthivel, R. & Anbuvithya, R. & Mathiyalagan, K. & Ma, Yong-Ki & Prakash, P., 2016. "Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 213-228.
    10. Bao, Haibo & Park, Ju H. & Cao, Jinde, 2015. "Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 543-556.
    11. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    12. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    13. Meng, Xianhe & Zhang, Xian & Wang, Yantao, 2023. "Bounded real lemmas and exponential H∞ control for memristor-based neural networks with unbounded time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 66-81.
    14. Wang, Pengfei & Zou, Wenqing & Su, Huan, 2019. "Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 338-354.
    15. Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Suvetha, R. & Nieto, J.J. & Prakash, P., 2025. "Non-fragile output-feedback control for delayed memristive bidirectional associative memory neural networks against actuator failure," Applied Mathematics and Computation, Elsevier, vol. 485(C).
    17. Zhang, Shuai & Yang, Yongqing & Sui, Xin & Xu, Xianyu, 2019. "Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    20. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:346-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.