IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920307219.html
   My bibliography  Save this article

Temporal gap statistic: A new internal index to validate time series clustering

Author

Listed:
  • Ribeiro, Rosana Guimarães
  • Rios, Ricardo

Abstract

Unsupervised Machine Learning techniques have been developed to find out structures in datasets without considering any prior information. In such a context, the main challenge is to confirm whether the obtained structure indeed contains relevant data patterns. Aiming at solving this issue, there are several validation indexes proposed under different categories (e.g. internal, external, and relative) that allow to, for example, compare clustering algorithms or define the best parameter configurations. However, most of those indices are applied to data characterized for being collected in an independent and identically distributed manner. Thus, after performing a Systematic Literature Review, we noticed there are few researches investigating validation indexes specifically designed to deal with time-dependent data. The absence of researches for such context has motivated this work that was devoted to developing a new internal index based on Gap Statistic. Our index supports the estimation of the optimal number of clusters in a dataset only composed of time series. To reach this goal, we performed three important modifications in Gap Statistic: i) the use of a measure to calculate the distance between time series; ii) the adoption of a clustering method based on medoid; and iii) the modeling of time series in phase space using Dynamical System tools. Our results emphasize the importance of the proposed index, by accurately clustering sets of chaotic time series.

Suggested Citation

  • Ribeiro, Rosana Guimarães & Rios, Ricardo, 2021. "Temporal gap statistic: A new internal index to validate time series clustering," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307219
    DOI: 10.1016/j.chaos.2020.110326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920307219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2022. "Performance-based climatic zoning method for building energy efficiency applications using cluster analysis," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    2. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," Working Papers 2022-2, Princeton University. Economics Department..
    3. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    4. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    5. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    6. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    7. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    8. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    9. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    10. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    11. Mehmet Çağlar & Cem Gürler, 2022. "Sustainable Development Goals: A cluster analysis of worldwide countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8593-8624, June.
    12. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    13. Daniel Lewis & Davide Melcangi & Laura Pilossoph, 2019. "Latent Heterogeneity in the Marginal Propensity to Consume," 2019 Meeting Papers 519, Society for Economic Dynamics.
    14. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
    15. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    16. Germán Caruso & Walter Sosa-Escudero & Marcela Svarc, 2015. "Deprivation and the Dimensionality of Welfare: A Variable-Selection Cluster-Analysis Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(4), pages 702-722, December.
    17. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    18. Yingqiu Zhu & Qiong Deng & Danyang Huang & Bingyi Jing & Bo Zhang, 2021. "Clustering based on Kolmogorov–Smirnov statistic with application to bank card transaction data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 558-578, June.
    19. Aswin Balasubramanian & Floran Martin & Md Masum Billah & Osaruyi Osemwinyen & Anouar Belahcen, 2021. "Application of Surrogate Optimization Routine with Clustering Technique for Optimal Design of an Induction Motor," Energies, MDPI, vol. 14(16), pages 1-19, August.
    20. Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.