IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305506.html
   My bibliography  Save this article

Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods

Author

Listed:
  • Bagal, Dilip Kumar
  • Rath, Arati
  • Barua, Abhishek
  • Patnaik, Dulu

Abstract

Owing to the pandemic scenario of COVID-19 disease cases all over the world, the outbreak prediction has become extremely complex for the emerging scientific research. Several epidemiological mathematical models of spread are increasing daily to forecast the predictions appropriately. In this study, the classical susceptible-infected-recovered (SIR) modeling approach was employed to study the different parameters of this model for India. This approach was analyzed by considering different governmental lockdown measures in India. Some assumptions were considered to fit the model in the Python simulation for each lockdown scenario. The predicted parameters of the SIR model exhibited some improvement in each case of lockdown in India. In addition, the outcome results indicated that extreme interventions should be performed to tackle this type of pandemic situation in the near future.

Suggested Citation

  • Bagal, Dilip Kumar & Rath, Arati & Barua, Abhishek & Patnaik, Dulu, 2020. "Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305506
    DOI: 10.1016/j.chaos.2020.110154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    2. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    3. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    4. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Postnikov, Eugene B., 2020. "Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Md Arif Billah & Md Mamun Miah & Md Nuruzzaman Khan, 2020. "Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    3. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Meyer, Patrick & Dolgui, Alexandre, 2023. "Production-sharing of critical resources with dynamic demand under pandemic situation: The COVID-19 pandemic," Omega, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    2. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    3. Viral Acharya & Zhengyang Jiang & Robert J. Richmond & Ernst-Ludwig von Thadden, 2020. "Divided We Fall: International Health and Trade Coordination During a Pandemic," CRC TR 224 Discussion Paper Series crctr224_2020_248, University of Bonn and University of Mannheim, Germany.
    4. Dizioli, Allan & Pinheiro, Roberto, 2021. "Information and inequality in the time of a pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    5. Attar, M. Aykut & Tekin-Koru, Ayça, 2022. "Latent social distancing: Identification, causes and consequences," Economic Systems, Elsevier, vol. 46(1).
    6. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    7. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    8. Mitman, Kurt & Hanley, Douglas & Bognanni, Mark & Kolliner, Daniel, 2020. "Economics and Epidemics: Evidence from an Estimated Spatial Econ-SIR Model," CEPR Discussion Papers 15310, C.E.P.R. Discussion Papers.
    9. Jackson, Paul & Ortego-Marti, Victor, 2024. "Skill loss during unemployment and the scarring effects of the COVID-19 pandemic," Labour Economics, Elsevier, vol. 88(C).
    10. Vandenbroucke Guillaume, 2022. "The Mechanics of Individually- and Socially-Optimal Decisions during an Epidemic," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 131-158, January.
    11. Glover, Andrew & Heathcote, Jonathan & Krueger, Dirk & Ríos-Rull, José-Víctor, 2023. "Health versus wealth: On the distributional effects of controlling a pandemic," Journal of Monetary Economics, Elsevier, vol. 140(C), pages 34-59.
    12. David Baqaee & Emmanuel Farhi, 2022. "Supply and Demand in Disaggregated Keynesian Economies with an Application to the COVID-19 Crisis," American Economic Review, American Economic Association, vol. 112(5), pages 1397-1436, May.
    13. Janiak, Alexandre & Machado, Caio & Turén, Javier, 2021. "Covid-19 contagion, economic activity and business reopening protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 264-284.
    14. Hornstein Andreas, 2022. "Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 53-88, January.
    15. Alexander Karaivanov, 2020. "A social network model of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-33, October.
    16. Tödter, Karl-Heinz, 2020. "Ein SIRD-Modell zur Infektionsdynamik mit endogener Behandlungskapazität und Lehren für Corona-Statistiken," IMFS Working Paper Series 141, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    17. Sewon Hur, 2023. "The Distributional Effects Of Covid‐19 And Optimal Mitigation Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(1), pages 261-294, February.
    18. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    19. Andrew B. Abel & Stavros Panageas, 2020. "Social Distancing, Vaccination and the Paradoxical Optimality of an Endemic Equilibrium," NBER Working Papers 27742, National Bureau of Economic Research, Inc.
    20. Jacek Rothert & Ryan Brady & Michael Insler, 2020. "The Fragmented United States of America: The impact of scattered lock-down policies on country-wide infections," Departmental Working Papers 65, United States Naval Academy Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.