IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics096007792030432x.html
   My bibliography  Save this article

A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India

Author

Listed:
  • Sahoo, Bijay Kumar
  • Sapra, Balvinder Kaur

Abstract

We propose a data driven epidemic model using the real data on the infection, recovery and death cases for the analysis of COVID-19 progression in India. The model assumes continuation of existing control measures such as lockdown and quarantines, the suspected and confirmed cases and does not consider the scenario of 2nd surge of the epidemic due to any reason. The model is arrived after least square fitting of epidemic behaviour model based on theoretical formulation to the real data of cumulative infection cases reported between 24 March 2020 and 30May 2020. The predictive capability of the model has been validated with real data of infection cases reported during June 1–10, 2020. A detailed analysis of model predictions in terms of future trend of COVID-19 progress individually in 18 states of India and India as a whole has been attempted. Infection rate in India, as a whole, is continuously decreasing with time and has reached 3 times lower than the initial infection rate after 6 weeks of lock down suggesting the effectiveness of the lockdown in containing the epidemic. Results suggest that India, as a whole, could see the peak and end of the epidemic in the month of July 2020 and March 2021 respectively as per the current trend in the data. Active infected cases in India may touch 2 lakhs or little above at the peak time and total infected cases may reach over 19 lakhs as per current trend. State-wise results have been discussed in the manuscript. However, the prediction may deviate particularly for longer dates, as assumptions of model cannot be met always in a real scenario. In view of this, a real time application (COV-IND Predictor) has been developed which automatically syncs the latest data from the national COVID19 dash board on daily basis and updates the model input parameters and predictions instantaneously. This real time application can be accessed from the link: https://docs.google.com/spreadsheets/d/1fCwgnQ-dz4J0YWVDHUcbEW1423wOJjdEXm8TqJDWNAk/edit?usp=sharing and can serve as a practical tool for policy makers to track peak time and maximum active infected cases based on latest trend in data for medical readiness and taking epidemic management decisions.

Suggested Citation

  • Sahoo, Bijay Kumar & Sapra, Balvinder Kaur, 2020. "A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030432x
    DOI: 10.1016/j.chaos.2020.110034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030432X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Seth Flaxman & Swapnil Mishra & Axel Gandy & H. Juliette T. Unwin & Thomas A. Mellan & Helen Coupland & Charles Whittaker & Harrison Zhu & Tresnia Berah & Jeffrey W. Eaton & Mélodie Monod & Azra C. Gh, 2020. "Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe," Nature, Nature, vol. 584(7820), pages 257-261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Mokhlesur Rahman & Jean-Claude Thill, 2022. "Associations between COVID-19 Pandemic, Lockdown Measures and Human Mobility: Longitudinal Evidence from 86 Countries," IJERPH, MDPI, vol. 19(12), pages 1-31, June.
    2. Zubcoff, Jose-Jacobo & Olcina, Jorge & Morales, Javier & Mazón, Jose-Norberto & Mayoral, Asunción M., 2023. "Usefulness of open data to determine the incidence of COVID-19 and its relationship with atmospheric variables in Spain during the 2020 lockdown," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foliano, Francesca & Tonei, Valentina & Sevilla, Almudena, 2024. "Social restrictions, leisure and well-being," Labour Economics, Elsevier, vol. 87(C).
    2. Emanuele Amodio & Michele Battisti & Antonio Francesco Gravina & Andrea Mario Lavezzi & Giuseppe Maggio, 2023. "School‐age vaccination, school openings and Covid‐19 diffusion," Health Economics, John Wiley & Sons, Ltd., vol. 32(5), pages 1084-1100, May.
    3. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    5. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Giorgio Fabbri & Salvatore Federico & Davide Fiaschi & Fausto Gozzi, 2024. "Mobility decisions, economic dynamics and epidemic," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(1), pages 495-531, February.
    10. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    11. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    12. Li, Xun & Lai, Weizheng & Wan, Qianqian & Chen, Xi, 2022. "Role of professionalism in response to the COVID-19 pandemic: Does a public health or medical background help?," China Economic Review, Elsevier, vol. 71(C).
    13. Wan, Jinming & Ichinose, Genki & Small, Michael & Sayama, Hiroki & Moreno, Yamir & Cheng, Changqing, 2022. "Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    16. Lin Ma & Gil Shapira & Damien de Walque & Quy‐Toan Do & Jed Friedman & Andrei A. Levchenko, 2022. "The Intergenerational Mortality Trade‐Off Of Covid‐19 Lockdown Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1427-1468, August.
    17. Roy Cerqueti & Raffaella Coppier & Alessandro Girardi & Marco Ventura, 2022. "The sooner the better: lives saved by the lockdown during the COVID-19 outbreak. The case of Italy," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 46-70.
    18. Mouratidis, Kostas, 2021. "How COVID-19 reshaped quality of life in cities: A synthesis and implications for urban planning," Land Use Policy, Elsevier, vol. 111(C).
    19. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    20. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030432x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.