IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics096007792030432x.html
   My bibliography  Save this article

A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India

Author

Listed:
  • Sahoo, Bijay Kumar
  • Sapra, Balvinder Kaur

Abstract

We propose a data driven epidemic model using the real data on the infection, recovery and death cases for the analysis of COVID-19 progression in India. The model assumes continuation of existing control measures such as lockdown and quarantines, the suspected and confirmed cases and does not consider the scenario of 2nd surge of the epidemic due to any reason. The model is arrived after least square fitting of epidemic behaviour model based on theoretical formulation to the real data of cumulative infection cases reported between 24 March 2020 and 30May 2020. The predictive capability of the model has been validated with real data of infection cases reported during June 1–10, 2020. A detailed analysis of model predictions in terms of future trend of COVID-19 progress individually in 18 states of India and India as a whole has been attempted. Infection rate in India, as a whole, is continuously decreasing with time and has reached 3 times lower than the initial infection rate after 6 weeks of lock down suggesting the effectiveness of the lockdown in containing the epidemic. Results suggest that India, as a whole, could see the peak and end of the epidemic in the month of July 2020 and March 2021 respectively as per the current trend in the data. Active infected cases in India may touch 2 lakhs or little above at the peak time and total infected cases may reach over 19 lakhs as per current trend. State-wise results have been discussed in the manuscript. However, the prediction may deviate particularly for longer dates, as assumptions of model cannot be met always in a real scenario. In view of this, a real time application (COV-IND Predictor) has been developed which automatically syncs the latest data from the national COVID19 dash board on daily basis and updates the model input parameters and predictions instantaneously. This real time application can be accessed from the link: https://docs.google.com/spreadsheets/d/1fCwgnQ-dz4J0YWVDHUcbEW1423wOJjdEXm8TqJDWNAk/edit?usp=sharing and can serve as a practical tool for policy makers to track peak time and maximum active infected cases based on latest trend in data for medical readiness and taking epidemic management decisions.

Suggested Citation

  • Sahoo, Bijay Kumar & Sapra, Balvinder Kaur, 2020. "A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030432x
    DOI: 10.1016/j.chaos.2020.110034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030432X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seth Flaxman & Swapnil Mishra & Axel Gandy & H. Juliette T. Unwin & Thomas A. Mellan & Helen Coupland & Charles Whittaker & Harrison Zhu & Tresnia Berah & Jeffrey W. Eaton & Mélodie Monod & Azra C. Gh, 2020. "Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe," Nature, Nature, vol. 584(7820), pages 257-261, August.
    2. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zubcoff, Jose-Jacobo & Olcina, Jorge & Morales, Javier & Mazón, Jose-Norberto & Mayoral, Asunción M., 2023. "Usefulness of open data to determine the incidence of COVID-19 and its relationship with atmospheric variables in Spain during the 2020 lockdown," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    2. Md. Mokhlesur Rahman & Jean-Claude Thill, 2022. "Associations between COVID-19 Pandemic, Lockdown Measures and Human Mobility: Longitudinal Evidence from 86 Countries," IJERPH, MDPI, vol. 19(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazio, Andrea & Reggiani, Tommaso & Sabatini, Fabio, 2022. "The political cost of sanctions: Evidence from COVID-19," Health Policy, Elsevier, vol. 126(9), pages 872-878.
    2. Foliano, Francesca & Tonei, Valentina & Sevilla, Almudena, 2024. "Social restrictions, leisure and well-being," Labour Economics, Elsevier, vol. 87(C).
    3. Federico Crudu & Roberta Di Stefano & Giovanni Mellace & Silvia Tiezzi, 2022. "The Gray Zone," Department of Economics University of Siena 874, Department of Economics, University of Siena.
    4. Emanuele Amodio & Michele Battisti & Antonio Francesco Gravina & Andrea Mario Lavezzi & Giuseppe Maggio, 2023. "School‐age vaccination, school openings and Covid‐19 diffusion," Health Economics, John Wiley & Sons, Ltd., vol. 32(5), pages 1084-1100, May.
    5. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    6. Theologos Dergiades & Costas Milas & Elias Mossialos & Theodore Panagiotidis, 2021. "Effectiveness of Government Policies in Response to the COVID-19 Outbreak," Discussion Paper Series 2021_05, Department of Economics, University of Macedonia, revised Feb 2021.
    7. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    8. Rafael Robina-Ramírez & Jose-Amelio Medina-Merodio & Libertad Moreno-Luna & Héctor V. Jiménez-Naranjo & Marcelo Sánchez-Oro, 2021. "Safety and Health Measures for COVID-19 Transition Period in the Hotel Industry in Spain," IJERPH, MDPI, vol. 18(2), pages 1-19, January.
    9. Tadeo Javier Cocucci & Manuel Pulido & Juan Pablo Aparicio & Juan Ruíz & Mario Ignacio Simoy & Santiago Rosa, 2022. "Inference in epidemiological agent-based models using ensemble-based data assimilation," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-28, March.
    10. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    11. Jose M. Martin-Moreno & Antoni Alegre-Martinez & Victor Martin-Gorgojo & Jose Luis Alfonso-Sanchez & Ferran Torres & Vicente Pallares-Carratala, 2022. "Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    12. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    15. Victor Zakharov & Yulia Balykina & Igor Ilin & Andrea Tick, 2022. "Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    16. Bárcena-Martín, Elena & Molina, Julián & Muñoz-Fernández, Ana & Pérez-Moreno, Salvador, 2022. "Vulnerability and COVID-19 infection rates: A changing relationship during the first year of the pandemic," Economics & Human Biology, Elsevier, vol. 47(C).
    17. Mahmoudi, Mohammad Reza & Baleanu, Dumitru & Mansor, Zulkefli & Tuan, Bui Anh & Pho, Kim-Hung, 2020. "Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    19. Marco Pangallo & Alberto Aleta & R. Maria del Rio-Chanona & Anton Pichler & David Martín-Corral & Matteo Chinazzi & François Lafond & Marco Ajelli & Esteban Moro & Yamir Moreno & Alessandro Vespignani, 2024. "The unequal effects of the health–economy trade-off during the COVID-19 pandemic," Nature Human Behaviour, Nature, vol. 8(2), pages 264-275, February.
    20. Hausmann, Ricardo & Schetter, Ulrich, 2022. "Horrible trade-offs in a pandemic: Poverty, fiscal space, policy, and welfare," World Development, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030432x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.