IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp86-93.html
   My bibliography  Save this article

A fractional-order infectivity SIR model

Author

Listed:
  • Angstmann, C.N.
  • Henry, B.I.
  • McGann, A.V.

Abstract

Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartments, with a power-law function in the infectivity. We show that this model can also be formulated as an infection-age structured Kermack–McKendrick integro-differential SIR model. Under the appropriate limit the fractional infectivity model reduces to the standard ordinary differential equation SIR model.

Suggested Citation

  • Angstmann, C.N. & Henry, B.I. & McGann, A.V., 2016. "A fractional-order infectivity SIR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 86-93.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:86-93
    DOI: 10.1016/j.physa.2016.02.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001953
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Runzhou & Zhang, Xinsheng & Wang, Minghu, 2024. "A two-layer model with partial mapping: Unveiling the interplay between information dissemination and disease diffusion," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    2. Sk, Tahajuddin & Biswas, Santosh & Sardar, Tridip, 2022. "The impact of a power law-induced memory effect on the SARS-CoV-2 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Min, Seungsik & Shin, Ki-Hong & Baek, Woonhak & Kim, Kyungsik & You, Cheol-Hwan & Lee, Dong-In & Yum, Seong Soo & Kim, Wonheung & Chang, Ki-Ho, 2020. "Dynamical behavior of combined detrended cross-correlation analysis methods in random walks and Lévy flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Byun, Jong Hyuk & Jung, Il Hyo, 2021. "Phase-specific cancer-immune model considering acquired resistance to therapeutic agents," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    5. Akinlar, M.A. & Inc, Mustafa & Gómez-Aguilar, J.F. & Boutarfa, B., 2020. "Solutions of a disease model with fractional white noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    7. Babaei, A. & Ahmadi, M. & Jafari, H. & Liya, A., 2021. "A mathematical model to examine the effect of quarantine on the spread of coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Tirumalasetty Chiranjeevi & Raj Kumar Biswas, 2017. "Discrete-Time Fractional Optimal Control," Mathematics, MDPI, vol. 5(2), pages 1-12, April.
    9. Wenjia Liu & Jian Wang & Yanfeng Ouyang, 2022. "Rumor Transmission in Online Social Networks Under Nash Equilibrium of a Psychological Decision Game," Networks and Spatial Economics, Springer, vol. 22(4), pages 831-854, December.
    10. Nan Xu & Yaoqun Xu, 2022. "Research on Tacit Knowledge Dissemination of Automobile Consumers’ Low-Carbon Purchase Intention," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    11. Sene, Ndolane, 2020. "SIR epidemic model with Mittag–Leffler fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    12. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:86-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.