IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919305417.html
   My bibliography  Save this article

Effect of mobility and predator switching on the dynamical behavior of a predator-prey model

Author

Listed:
  • Wang, Jin-Shan
  • Wu, Yong-Ping
  • Li, Li
  • Sun, Gui-Quan

Abstract

Predator switching is an indispensable factor for a general predator in food chain and spatial motions is also the basic feature in the dynamics of ecosystems. However, the effects of those behavior on population dynamic are not fully understood. To explore their roles, we introduce a predator-prey model with diffusion. What is more, we take the prey as a part of environmental carrying capacity of predator in model to describe predator switching which we also called predation dependence. Our purpose is to reveal that how this predator spatial distribution transforms and density change as the degree of dependence about predator on prey or prey’s mobility varies. Through the analysis of Hopf and Turing bifurcation, exact Turing region is obtained. Furthermore, to find which kind of pattern will arise we study the amplitude equations of the Turing pattern after carrying out the multiple scale analysis. Additionally, we alter the parameters which we are concerned in Turing domain to investigate how patterns transform. The results suggest that when the mobility of prey crosses a certain value, the prey population is inclined to extinct, its existence is being threatened. However, when the predator is dependent on this prey, then both population density of them will augment as the degree of dependence increases. This work systematically reveals the impact of spatial mobility and predator switching on population sustainability.

Suggested Citation

  • Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305417
    DOI: 10.1016/j.chaos.2019.109584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
    2. Li, Shudong & Zhao, Dawei & Wu, Xiaobo & Tian, Zhihong & Li, Aiping & Wang, Zhen, 2020. "Functional immunization of networks based on message passing," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    3. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    4. Quan-Xing Liu & Peter M. J. Herman & Wolf M. Mooij & Jef Huisman & Marten Scheffer & Han Olff & Johan van de Koppel, 2014. "Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Pal, Nikhil & Samanta, Sudip & Chattopadhyay, Joydev, 2014. "Revisited Hastings and Powell model with omnivory and predator switching," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 58-73.
    6. Zhu, Peican & Wang, Xinyu & Li, Shudong & Guo, Yangming & Wang, Zhen, 2019. "Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 512-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Xue, Qiang & Liu, Chen & Li, Li & Sun, Gui-Quan & Wang, Zhen, 2021. "Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    3. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    3. Wu, Zeyan & Li, Jianjuan & Li, Jing & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2017. "Pattern formations of an epidemic model with Allee effect and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 599-606.
    4. Hernández Guillén, J.D. & Martín del Rey, A., 2020. "A mathematical model for malware spread on WSNs with population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    6. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    7. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    8. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Yurek, Simeon & Eaton, Mitchell J. & Lavaud, Romain & Laney, R. Wilson & DeAngelis, Donald L. & Pine, William E. & La Peyre, Megan & Martin, Julien & Frederick, Peter & Wang, Hongqing & Lowe, Michael , 2021. "Modeling structural mechanics of oyster reef self-organization including environmental constraints and community interactions," Ecological Modelling, Elsevier, vol. 440(C).
    10. Leno S Rocha & Frederico S A Rocha & Thársis T P Souza, 2017. "Is the public sector of your country a diffusion borrower? Empirical evidence from Brazil," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.
    11. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    12. Xinmiao An & Xiaomin Wang & Boyu Zhang, 2020. "Bimatrix Replicator Dynamics with Periodic Impulses," Dynamic Games and Applications, Springer, vol. 10(3), pages 676-694, September.
    13. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Ning Wang & Hailun Zhang & Ruoning Lv & Yangming Guo & Peican Zhu, 2022. "An investigation of reliability optimization in standby systems," Journal of Risk and Reliability, , vol. 236(2), pages 237-247, April.
    16. Li, Jing & Jin, Zhen & Sun, Gui-Quan, 2016. "Periodic solutions of a spatiotemporal predator-prey system with additional food," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 350-359.
    17. Fernandez-Gonzalez, Victor & Echeverría-Alar, Sebastián & Vergara, Jorge & Hidalgo, Paulina I. & Clerc, Marcel G., 2024. "Topological transition between disordered patterns through heating rate-induced defect emergence," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Zhang, Xueli & Huang, Yehui & Weng, Peixuan, 2016. "Stability and bifurcation of a predator–prey model with disease in the prey and temporal–spatial nonlocal effect," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 467-486.
    19. Hu, Jun & Xia, Chengyi & Li, Huijia & Zhu, Peican & Xiong, Wenjun, 2020. "Properties and structural analyses of USA’s regional electricity market: A visibility graph network approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    20. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.