IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp599-606.html
   My bibliography  Save this article

Pattern formations of an epidemic model with Allee effect and time delay

Author

Listed:
  • Wu, Zeyan
  • Li, Jianjuan
  • Li, Jing
  • Liu, Shuying
  • Zhou, Liuting
  • Luo, Yang

Abstract

Allee effect widely exists for endangered plants and animals in ecosystem, which indicates that the minimum population density or size is necessary for population survival, namely, Allee threshold. In this paper, a delayed reaction-diffusion epidemic model with respect to Allee effect is investigated. The instability of the positive constant steady state is induced by two mechanisms, one is diffusion-induced instability, the other is delay-induced instability. The first case gives rise to Turing patterns. Moreover, Turing region becomes narrow as incubation delay being increased. We further observe that the range of Turing mode is enlarged with the increase of Allee threshold. The numerical simulations verify our theoretical results. The combined effects of Allee effect and disease on the spatial distributions of endangered species are studied, which provides new insights for human intervention in conservation management of these species.

Suggested Citation

  • Wu, Zeyan & Li, Jianjuan & Li, Jing & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2017. "Pattern formations of an epidemic model with Allee effect and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 599-606.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:599-606
    DOI: 10.1016/j.chaos.2017.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791730396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Darabsah, Isam & Yuan, Yuan, 2016. "A time-delayed epidemic model for Ebola disease transmission," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 307-325.
    2. Xing, Yi & Song, Lipeng & Sun, Gui-Quan & Jin, Zhen & Zhang, Juan, 2017. "Assessing reappearance factors of H7N9 avian influenza in China," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 192-204.
    3. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    4. Quan-Xing Liu & Peter M. J. Herman & Wolf M. Mooij & Jef Huisman & Marten Scheffer & Han Olff & Johan van de Koppel, 2014. "Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Hu, Jiang-Hong & Xue, Ya-Kui & Sun, Gui-Quan & Jin, Zhen & Zhang, Juan, 2016. "Global dynamics of a predator–prey system modeling by metaphysiological approach," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 369-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana, Sourav & Bhattacharya, Sabyasachi & Samanta, Sudip, 2022. "Spatiotemporal dynamics of Leslie–Gower predator–prey model with Allee effect on both populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 32-49.
    2. He, Le & Su, Haijun, 2024. "Spatiotemporal patterns of reaction–diffusion systems with advection mechanisms on large-scale regular networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Li, 2017. "Transmission dynamics of Ebola virus disease with human mobility in Sierra Leone," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 575-579.
    2. Wang, Caiyun & Qi, Suying, 2018. "Spatial dynamics of a predator-prey system with cross diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 55-60.
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
    7. Sui, Xin & Li, Liang, 2018. "Guarantee network model and risk contagion," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 323-329.
    8. Wen, Haijun & Hou, Shiwang & Liu, Zhaohua & Liu, Yongjiang, 2017. "An optimization algorithm for integrated remanufacturing production planning and scheduling system," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 69-76.
    9. Wu, Zeyan & Li, Jianjuan & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2019. "A spatial predator–prey system with non-renewable resources," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 381-391.
    10. Khan, Asaf & Zaman, Gul, 2018. "Global analysis of an age-structured SEIR endemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 154-165.
    11. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    12. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Suo, Qi & Guo, Jin-Li & Shen, Ai-Zhong, 2018. "Information spreading dynamics in hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 475-487.
    14. Liu, Chanjuan & Zhu, Enqiang, 2017. "Computational ability in games: Individual difference and dynamics," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 313-320.
    15. Zhang, Hong-Tao & Li, Li, 2018. "Traveling wave fronts of a single species model with cannibalism and nonlocal effect," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 148-153.
    16. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    17. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    18. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    19. Wu, Yong-Ping & Zhu, Chun-yangzi & Feng, Guo-Lin & Li, B. Larry, 2018. "Mathematical modeling of Fog-Haze evolution," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 1-4.
    20. Yurek, Simeon & Eaton, Mitchell J. & Lavaud, Romain & Laney, R. Wilson & DeAngelis, Donald L. & Pine, William E. & La Peyre, Megan & Martin, Julien & Frederick, Peter & Wang, Hongqing & Lowe, Michael , 2021. "Modeling structural mechanics of oyster reef self-organization including environmental constraints and community interactions," Ecological Modelling, Elsevier, vol. 440(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:599-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.