Magnetic field effect on a fractionalized blood flow model in the presence of magnetic particles and thermal radiations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2019.109540
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Njagarah, J.B.H. & Tabi, C.B., 2018. "Spatial synchrony in fractional order metapopulation cholera transmission," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 37-49.
- Tabi, Conrad Bertrand, 2018. "Fractional unstable patterns of energy in α−helix proteins with long-range interactions," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 386-391.
- Doungmo Goufo, Emile F. & Kumar, Sunil & Mugisha, S.B., 2020. "Similarities in a fifth-order evolution equation with and with no singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
- Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
- T. Chinyoka & O. D. Makinde, 2014. "Computational Dynamics of Arterial Blood Flow in the Presence of Magnetic Field and Thermal Radiation Therapy," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-9, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
- Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
- Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
- Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
- Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
- Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
- Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
- Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
- Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
- Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
- Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
- Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
- Usman, Muhammad & Hamid, Muhammad & Liu, Moubin, 2021. "Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
- Maiti, S. & Shaw, S. & Shit, G.C., 2020. "Caputo–Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
More about this item
Keywords
Magnetohydrodynamics; Fractional derivatives; Magnetic field; Magnetic particles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304916. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.