IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v128y2019icp269-274.html
   My bibliography  Save this article

Existence of the solution and stability for a class of variable fractional order differential systems

Author

Listed:
  • Jiang, Jingfei
  • Chen, Huatao
  • Guirao, Juan L.G.
  • Cao, Dengqing

Abstract

In this paper, the existence results of the solution and stability are focused for the variable fractional order differential equation. In view of the definitions of three kinds of Caputo variable fractional order operator, the sufficient condition of the solution existence for the variable fractional order differential system is obtained by use of Arzela–Ascoli theorem. Moreover, some criterions of the Mittag–Leffler stability and asymptotical stability are proposed for the variable fractional order differential system according to the Fractional Comparison Principle.

Suggested Citation

  • Jiang, Jingfei & Chen, Huatao & Guirao, Juan L.G. & Cao, Dengqing, 2019. "Existence of the solution and stability for a class of variable fractional order differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 269-274.
  • Handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:269-274
    DOI: 10.1016/j.chaos.2019.07.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.07.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingfei Jiang & Dengqing Cao & Huatao Chen & Kun Zhao, 2017. "The vibration transmissibility of a single degree of freedom oscillator with nonlinear fractional order damping," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(11), pages 2379-2393, August.
    2. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauhan, Archana & Gautam, G.R. & Chauhan, S.P.S. & Dwivedi, Arpit, 2023. "A validation on concept of formula for variable order integral and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Peng, Xiao & Wang, Yijing & Zuo, Zhiqiang, 2022. "Co-design of state-dependent switching law and control scheme for variable-order fractional nonlinear switched systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    5. Zhenduo Sun & Nengneng Qing & Xiangzhi Kong, 2023. "Asymptotic Hybrid Projection Lag Synchronization of Nonidentical Variable-Order Fractional Complex Dynamic Networks," Mathematics, MDPI, vol. 11(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingfei & Guirao, Juan Luis García & Chen, Huatao & Cao, Dengqing, 2019. "The boundary control strategy for a fractional wave equation with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 92-97.
    2. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    4. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    6. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    7. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    8. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    9. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    10. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    11. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    12. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    13. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    15. Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    17. Usman, Muhammad & Hamid, Muhammad & Liu, Moubin, 2021. "Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    19. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Tassaddiq, Asifa, 2019. "MHD flow of a fractional second grade fluid over an inclined heated plate," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 341-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:269-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.