IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i11p2379-2393.html
   My bibliography  Save this article

The vibration transmissibility of a single degree of freedom oscillator with nonlinear fractional order damping

Author

Listed:
  • Jingfei Jiang
  • Dengqing Cao
  • Huatao Chen
  • Kun Zhao

Abstract

Motivated by the theoretical analysis of the effects of nonlinear viscous damping on vibration isolation using the output frequency response function approach, the output frequency response function approach is employed to investigate the effects of the nonlinear fractional order damping on vibration isolation based on Volterra series in the frequency domain. First, the recursive algorithm which is proposed by Billings et al. is extended to deal with the system with fractional order terms. Then, the analytical relationships are established among the force transmissibility, nonlinear characteristic coefficients and fractional order parameters for the single degree of freedom oscillator. Consequently, the effects of the nonlinear system parameters on the force transmissibility are discussed in detail. The theoretical analysis reveals that the force transmissibility of the oscillator is suppressed due to the existence of the fractional order damping, but presents different effects on suppressing the force transmissibility of the oscillator over the frequency region by varying the fractional order parameters. Moreover, the fractional order parameters, which affect the force transmissibility, the bandwidth of the frequency region and the resonance frequency, can be used as designing parameters for vibration isolation systems. At last, numerical studies are presented to illustrate the theoretical results.

Suggested Citation

  • Jingfei Jiang & Dengqing Cao & Huatao Chen & Kun Zhao, 2017. "The vibration transmissibility of a single degree of freedom oscillator with nonlinear fractional order damping," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(11), pages 2379-2393, August.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:11:p:2379-2393
    DOI: 10.1080/00207721.2017.1316530
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2017.1316530
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2017.1316530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jingfei & Chen, Huatao & Guirao, Juan L.G. & Cao, Dengqing, 2019. "Existence of the solution and stability for a class of variable fractional order differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 269-274.
    2. Jiang, Jingfei & Guirao, Juan Luis GarcĂ­a & Chen, Huatao & Cao, Dengqing, 2019. "The boundary control strategy for a fractional wave equation with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 92-97.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:11:p:2379-2393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.