IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5292894.html
   My bibliography  Save this article

The Hierarchical Iterative Identification Algorithm for Multi-Input-Output-Error Systems with Autoregressive Noise

Author

Listed:
  • Jiling Ding

Abstract

This paper considers the identification problem of multi-input-output-error autoregressive systems. A hierarchical gradient based iterative (H-GI) algorithm and a hierarchical least squares based iterative (H-LSI) algorithm are presented by using the hierarchical identification principle. A gradient based iterative (GI) algorithm and a least squares based iterative (LSI) algorithm are presented for comparison. The simulation results indicate that the H-LSI algorithm can obtain more accurate parameter estimates than the LSI algorithm, and the H-GI algorithm converges faster than the GI algorithm.

Suggested Citation

  • Jiling Ding, 2017. "The Hierarchical Iterative Identification Algorithm for Multi-Input-Output-Error Systems with Autoregressive Noise," Complexity, Hindawi, vol. 2017, pages 1-11, October.
  • Handle: RePEc:hin:complx:5292894
    DOI: 10.1155/2017/5292894
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/5292894.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/5292894.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5292894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Xian-Feng & Chu, Yan-Dong & Leung, Andrew Y.T. & Zhang, Hui, 2017. "Synchronization of uncertain chaotic systems via complete-adaptive-impulsive controls," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 24-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Ma & Jian Pan & Lei Lv & Guanghui Xu & Feng Ding & Ahmed Alsaedi & Tasawar Hayat, 2019. "Recursive Algorithms for Multivariable Output-Error-Like ARMA Systems," Mathematics, MDPI, vol. 7(6), pages 1-18, June.
    2. Lijuan Wan & Ximei Liu & Feng Ding & Chunping Chen, 2019. "Decomposition Least-Squares-Based Iterative Identification Algorithms for Multivariable Equation-Error Autoregressive Moving Average Systems," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    3. Feng Ding & Jian Pan & Ahmed Alsaedi & Tasawar Hayat, 2019. "Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data," Mathematics, MDPI, vol. 7(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    3. Zhang, Huamin, 2018. "The eigenvalues range of a class of matrices and some applications in Cauchy–Schwarz inequality and iterative methods," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 37-48.
    4. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Zhang, Guoqi & Wu, Zhiqiang, 2019. "Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 342-353.
    6. Anand, Pallov & Sharma, Bharat Bhushan, 2020. "Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Abinandhitha, R. & Sakthivel, R. & Tatar, N. & Manikandan, R., 2022. "Anti-disturbance observer-based control for fuzzy chaotic semi-Markov jump systems with multiple disturbances and mixed actuator failures," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Weiqiu Pan & Tianzeng Li & Muhammad Sajid & Safdar Ali & Lingping Pu, 2022. "Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances," Mathematics, MDPI, vol. 10(5), pages 1-26, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5292894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.