IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v118y2019icp376-385.html
   My bibliography  Save this article

Coherence and anti-coherence resonance of corporation finance

Author

Listed:
  • Zhong, Guang-Yan
  • Li, Hai-Feng
  • Li, Jiang-Cheng
  • Mei, Dong-Cheng
  • Tang, Nian-Sheng
  • Long, Chao

Abstract

We investigate coherence resonance of corporate finance in a stochastic predator-prey model for creditors and producers. The stochastic predator-prey model with only considering financial risk and the Integral method of an improvement parameter estimation are proposed. Then the coefficient of variation (CV) of the interspike intervals is used to measure the phenomenon of coherence resonance. The simulating and empirical results indicate that (i) the phenomenon peak death is induced by higher noise strength and system parameters; (ii) the phenomenons of coherence and anti-coherence resonance are observed in the function of CV vs. noise strength; (iii) the critical phenomenon of resonance enhancement and inhibition is induced by some values of system parameters. In addition, a good agreement can be found between theoretical results and real financial data of Chinese companies.

Suggested Citation

  • Zhong, Guang-Yan & Li, Hai-Feng & Li, Jiang-Cheng & Mei, Dong-Cheng & Tang, Nian-Sheng & Long, Chao, 2019. "Coherence and anti-coherence resonance of corporation finance," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 376-385.
  • Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:376-385
    DOI: 10.1016/j.chaos.2018.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918306246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 405-409, October.
    2. Eduard Gracia, 2005. "Predator-Prey - An Alternative Model of Stock Market Bubbles and the Business Cycle," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 2(2), pages 77-105.
    3. B. Nowakowski & A. Kawczyński & A. Kolbus & A. Lemarchand, 2011. "Coherence resonances in excitable thermochemical systems induced by scaled reaction heat," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(1), pages 137-145, November.
    4. Jun-Jie Chen & Lei Tan & Bo Zheng, 2015. "Agent-based model with multi-level herding for complex financial systems," Papers 1504.01811, arXiv.org.
    5. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    6. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    7. G. Bonanno & D. Valenti & B. Spagnolo, 2005. "Role of Noise in a Market Model with Stochastic Volatility," Papers cond-mat/0510154, arXiv.org, revised Oct 2006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. D’Onofrio, Giuseppe & Lansky, Petr & Tamborrino, Massimiliano, 2019. "Inhibition enhances the coherence in the Jacobi neuronal model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 108-113.
    4. Zhou, Wei & Zhong, Guang-Yan & Li, Jiang-Cheng, 2022. "Stability of financial market driven by information delay and liquidity in delay agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Li, Jiang-Cheng & Leng, Na & Zhong, Guang-Yan & Wei, Yu & Peng, Jia-Sheng, 2020. "Safe marginal time of crude oil price via escape problem of econophysics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Tao, Chen & Zhong, Guang-Yan & Li, Jiang-Cheng, 2023. "Dynamic correlation and risk resonance among industries of Chinese stock market: New evidence from time–frequency domain and complex network perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Bonggyun & Song, Jae Wook, 2018. "A simple analytics framework for evaluating mean escape time in different term structures with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 398-412.
    2. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    3. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    6. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    7. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    9. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Wu, Jianjun & Xia, Lu, 2024. "Double well stochastic resonance for a class of three-dimensional financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Li, Jiang-Cheng & Xu, Ming-Zhe & Han, Xu & Tao, Chen, 2022. "Dynamic risk resonance between crude oil and stock market by econophysics and machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    15. Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    16. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    17. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    18. Wu, Anshun & Dong, Yang & Luo, Yuhui & Zeng, Chunhua, 2020. "Fluctuations-induced regime shifts in the Endogenous Credit system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    19. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    20. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:376-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.