IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v116y2018icp43-53.html
   My bibliography  Save this article

Fractional hyper-chaotic model with no equilibrium

Author

Listed:
  • Mishra, Jyoti

Abstract

This paper considers a novel four dimensional dynamical model containing hyper-chaotic attractors. The concept fractional differential based on the exponential and Mittage–Leffler kernel were used to extend the classical version in order to include into the mathematical formulation the crossover in waiting time distribution. We have presented for both models the conditions under which the existence and the uniqueness of exact solutions are reached.We have used a newly established numerical scheme, that combines the fundamental theorem of fractional calculus and the Lagrange interpolation polynomial to solve the system numerically. We presented some numerical simulations for different values of fractional order, we compared both models with the existing one under the framework of fractional calculus. Our model has shown very new chaotic features in particular with the Atangana–Baleanu fractional derivative.

Suggested Citation

  • Mishra, Jyoti, 2018. "Fractional hyper-chaotic model with no equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 43-53.
  • Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:43-53
    DOI: 10.1016/j.chaos.2018.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918308117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    2. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    3. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mishra, Jyoti, 2019. "Modified Chua chaotic attractor with differential operators with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 64-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    2. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    3. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    4. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    8. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.
    9. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    10. Alkahtani, Badr Saad T., 2018. "Numerical analysis of dissipative system with noise model with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 239-248.
    11. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    12. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    13. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    14. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    15. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    17. Cuahutenango-Barro, B. & Taneco-Hernández, M.A. & Gómez-Aguilar, J.F., 2018. "On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 283-299.
    18. R. Rakkiyappan & V. Preethi Latha & Fathalla A. Rihan, 2019. "A Fractional-Order Model for Zika Virus Infection with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    19. Vázquez-Guerrero, P. & Gómez-Aguilar, J.F. & Santamaria, F. & Escobar-Jiménez, R.F., 2019. "Synchronization patterns with strong memory adaptive control in networks of coupled neurons with chimera states dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 167-175.
    20. Hong Li & Jun Cheng & Hou-Biao Li & Shou-Ming Zhong, 2019. "Stability Analysis of a Fractional-Order Linear System Described by the Caputo–Fabrizio Derivative," Mathematics, MDPI, vol. 7(2), pages 1-9, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:43-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.