IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4178073.html
   My bibliography  Save this article

A Fractional-Order Model for Zika Virus Infection with Multiple Delays

Author

Listed:
  • R. Rakkiyappan
  • V. Preethi Latha
  • Fathalla A. Rihan

Abstract

Time delays and fractional order play a vital role in biological systems with memory. In this paper, we propose an epidemic model for Zika virus infection using delay differential equations with fractional order. Multiple time delays are incorporated in the model to consider the latency of the infection in a vector and the latency of the infection in the infected host. We investigate the necessary and sufficient conditions for stability of the steady states and Hopf bifurcation with respect to three time delays , , and . The model undergoes a Hopf bifurcation at the threshold parameters , , and . Some numerical simulations are given to show the effectiveness of obtained results. The numerical simulations confirm that combination of fractional order and time delays in the epidemic model effectively enriches the dynamics and strengthens the stability condition of the model.

Suggested Citation

  • R. Rakkiyappan & V. Preethi Latha & Fathalla A. Rihan, 2019. "A Fractional-Order Model for Zika Virus Infection with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-20, November.
  • Handle: RePEc:hin:complx:4178073
    DOI: 10.1155/2019/4178073
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4178073.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4178073.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4178073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    2. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    3. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    4. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    5. Zhao, Zhong & Chen, Lansun & Song, Xinyu, 2008. "Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 500-510.
    6. Rihan, F.A. & Lakshmanan, S. & Maurer, H., 2019. "Optimal control of tumour-immune model with time-delay and immuno-chemotherapy," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 147-165.
    7. Fathalla A. Rihan, 2013. "Numerical Modeling of Fractional-Order Biological Systems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suh, Jiyeon & Kwon, Hee-Dae & Lee, Jeehyun, 2024. "A model of Plasmodium vivax malaria with delays: Mathematical analysis and numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 169-187.
    2. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    2. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    3. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    5. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    6. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    7. Cuahutenango-Barro, B. & Taneco-Hernández, M.A. & Gómez-Aguilar, J.F., 2018. "On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 283-299.
    8. Vázquez-Guerrero, P. & Gómez-Aguilar, J.F. & Santamaria, F. & Escobar-Jiménez, R.F., 2019. "Synchronization patterns with strong memory adaptive control in networks of coupled neurons with chimera states dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 167-175.
    9. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    10. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.
    11. Hong Li & Jun Cheng & Hou-Biao Li & Shou-Ming Zhong, 2019. "Stability Analysis of a Fractional-Order Linear System Described by the Caputo–Fabrizio Derivative," Mathematics, MDPI, vol. 7(2), pages 1-9, February.
    12. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    13. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    14. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Saad, Khaled M. & Khan, Muhammad Altaf & Agarwal, P., 2019. "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 48-65.
    15. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    16. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    17. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    19. Alkahtani, Badr Saad T., 2018. "Numerical analysis of dissipative system with noise model with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 239-248.
    20. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4178073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.