IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v115y2018icp96-107.html
   My bibliography  Save this article

Unknown input observer design for a class of fractional order nonlinear systems

Author

Listed:
  • Sharma, Vivek
  • Shukla, Manoj
  • Sharma, B.B.

Abstract

Analysis and control of fractional order (FO) nonlinear systems is a challenging problem. In earlier works, as highlighted in literature, stability conditions for the FO LTI systems are analytically derived and these results are extended to formulate LMI conditions to express the stability of the FO LTI systems. In present work, design of full order and reduced order observers for imperfect fractional order nonlinear systems is presented. Imperfections in real system are silent dynamics and can be modeled as unknown input. To design observer for such system, unknown input observer (UIO) design concepts are used and LMI conditions for the existence of observer are analytically derived. For this purpose, Differential Mean Value (DMV) theorem is used and nonlinear term in the error dynamics is alternatively expressed in appropriate equivalent form. As a result, error dynamics evolves as Linear Parameter Varying (LPV) system and then stability results for FO LTI systems are extended to stabilize FO nonlinear error dynamical systems. LMI conditions for the existence of unknown input observer for the two cases 0 < α < 1 and 1 < α < 2 are analytically derived. Feasible solution of LMI gives the observer design matrices directly. Finally, results of simulation are presented to authenticate the proposed approach.

Suggested Citation

  • Sharma, Vivek & Shukla, Manoj & Sharma, B.B., 2018. "Unknown input observer design for a class of fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 96-107.
  • Handle: RePEc:eee:chsofr:v:115:y:2018:i:c:p:96-107
    DOI: 10.1016/j.chaos.2018.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918308555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Stabilization of a class of fractional order chaotic systems via backstepping approach," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 56-62.
    2. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    3. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.
    4. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    5. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    6. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    7. Sharma, Vivek & Sharma, B.B. & Nath, R., 2017. "Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 51-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenchen Peng & Haiyi Yang & Anqing Yang & Ling Ren, 2024. "A New Observer Design for the Joint Estimation of States and Unknown Inputs for a Class of Nonlinear Fractional-Order Systems," Mathematics, MDPI, vol. 12(8), pages 1-12, April.
    2. Li, Mingyue & Chen, Huanzhen & Li, Xiaodi, 2021. "Exponential stability of nonlinear systems involving partial unmeasurable states via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Parvizian, Majid & Khandani, Khosro, 2021. "Hyperbolic observer design for a class of nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. You, Xingxing & Shi, Mingyang & Guo, Bin & Zhu, Yuqi & Lai, Wuxing & Dian, Songyi & Liu, Kai, 2022. "Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Hamid, Syeda Rabiya & Nazir, Muhammad Shahid & Rehan, Muhammad & ur Rashid, Haroon, 2019. "New results on regional observer-based stabilization for locally Lipchitz nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 173-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    3. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    4. Yu, Yongguang & Li, Han-Xiong & Wang, Sha & Yu, Junzhi, 2009. "Dynamic analysis of a fractional-order Lorenz chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1181-1189.
    5. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    6. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    7. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    8. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    9. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    10. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    11. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    12. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    13. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.
    14. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    15. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    16. Martínez-Guerra, Rafael & Pérez-Pinacho, Claudia A. & Gómez-Cortés, Gian Carlo & Cruz-Victoria, Juan C., 2015. "Synchronization of incommensurate fractional order system," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 260-266.
    17. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaos in a new system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1203-1212.
    18. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    19. Chunlai Li & Jing Zhang, 2016. "Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2440-2448, July.
    20. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:115:y:2018:i:c:p:96-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.