IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v106y2018icp330-336.html
   My bibliography  Save this article

The effect of the junction model on the anomalous diffusion in the 3D comb structure

Author

Listed:
  • Dzhanoev, A.R.
  • Sokolov, I.M.

Abstract

The diffusion in the comb structures is a popular model of geometrically induced anomalous diffusion. In the present work we concentrate on the diffusion along the backbone in a system where sidebranches are planes, and the diffusion thereon is anomalous and described by continuous time random walks (CTRW). We show that the mean squared displacement (MSD) in the backbone of the comb behaves differently depending on whether the waiting time periods in the sidebranches are reset after the step in the backbone is done (a rejuvenating junction model), or not (a non-rejuvenating junction model). In the rejuvenating case the subdiffusion in the sidebranches only changes the prefactor in the ultra-slow (logarithmic) diffusion along the backbone, while in the non-rejuvenating case the ultraslow, logarithmic subdiffusion is changed to a much faster power-law subdiffusion (with a logarithmic correction) as it was found earlier by Iomin and Mendez [25]. Moreover, in the first case the result does not change if the diffusion in the backbone is itself anomalous, while in the second case it does. Two of the special cases of the considered models (the non-rejuvenating junction under normal diffusion in the backbone, and rejuvenating junction for the same waiting time distribution in the sidebranches and in junction points) were also investigated within the approach based on the corresponding generalized Fokker–Planck equations.

Suggested Citation

  • Dzhanoev, A.R. & Sokolov, I.M., 2018. "The effect of the junction model on the anomalous diffusion in the 3D comb structure," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 330-336.
  • Handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:330-336
    DOI: 10.1016/j.chaos.2017.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiss, George H. & Havlin, Shlomo, 1986. "Some properties of a random walk on a comb structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 474-482.
    2. Méndez, Vicenç & Iomin, Alexander, 2013. "Comb-like models for transport along spiny dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 46-51.
    3. Iomin, A. & Méndez, V., 2016. "Does ultra-slow diffusion survive in a three dimensional cylindrical comb?," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 142-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trifce Sandev & Viktor Domazetoski & Alexander Iomin & Ljupco Kocarev, 2021. "Diffusion–Advection Equations on a Comb: Resetting and Random Search," Mathematics, MDPI, vol. 9(3), pages 1-24, January.
    2. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trifce Sandev & Viktor Domazetoski & Alexander Iomin & Ljupco Kocarev, 2021. "Diffusion–Advection Equations on a Comb: Resetting and Random Search," Mathematics, MDPI, vol. 9(3), pages 1-24, January.
    2. Pottier, N., 1994. "Analytic study of a model of biased diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(1), pages 91-123.
    3. Arkhincheev, V.E., 2020. "The capture of particles on absorbing traps in the medium with anomalous diffusion: The effective fractional order diffusion equation and the slow temporal asymptotic of survival probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    5. Baskin, Emmanuel & Iomin, Alexander, 2011. "Electrostatics in fractal geometry: Fractional calculus approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 335-341.
    6. Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
    7. Valerii M Sukhorukov & Jürgen Bereiter-Hahn, 2009. "Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
    8. Sandev, Trifce & Schulz, Alexander & Kantz, Holger & Iomin, Alexander, 2018. "Heterogeneous diffusion in comb and fractal grid structures," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 551-555.
    9. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 2011. "On the local time of random walk on the 2-dimensional comb," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1290-1314, June.
    10. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Endre Csáki & Antónia Földes, 2020. "Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ Z 2," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2233-2257, December.
    12. Kotak, Jesal D. & Barma, Mustansir, 2022. "Bias induced drift and trapping on random combs and the Bethe lattice: Fluctuation regime and first order phase transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    13. Endre Csáki & Antónia Földes, 2022. "Strong Approximation of the Anisotropic Random Walk Revisited," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2879-2895, December.
    14. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    15. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    16. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.
    17. Wang, Zhaoyang & Lin, Ping & Wang, Erhui, 2021. "Modeling multiple anomalous diffusion behaviors on comb-like structures," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Aslangul, C. & Pottier, N. & Chvosta, P., 1994. "Analytic study of a model of diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 533-565.
    19. Endre Csáki & Antónia Földes, 2022. "On the Local Time of the Half-Plane Half-Comb Walk," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1247-1261, June.
    20. Méndez, Vicenç & Iomin, Alexander, 2013. "Comb-like models for transport along spiny dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 46-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:330-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.