IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v597y2022ics0378437122002540.html
   My bibliography  Save this article

Bias induced drift and trapping on random combs and the Bethe lattice: Fluctuation regime and first order phase transitions

Author

Listed:
  • Kotak, Jesal D.
  • Barma, Mustansir

Abstract

We study the competition between field-induced transport and trapping in a disordered medium by studying biased random walks on random combs and the bond-diluted Bethe lattice above the percolation threshold. While it is known that the drift velocity vanishes above a critical threshold, here our focus is on fluctuations, characterized by the variance of the transit times. On the random comb, the variance is calculated exactly for a given realization of disorder using a ‘forward transport’ limit which prohibits backward movement along the backbone but allows an arbitrary number of excursions into random-length branches. The disorder-averaged variance diverges at an earlier threshold of the bias, implying a regime of anomalous fluctuations, although the velocity is nonzero. Our results are verified numerically using a Monte Carlo procedure that is adapted to account for ultra-slow returns from long branches. On the Bethe lattice, we derive an upper bound for the critical threshold bias for anomalous fluctuations of the mean transit time averaged over disorder realizations. Finally, as for the passage to the vanishing velocity regime, it is shown that the transition to the anomalous fluctuation regime can change from continuous to first order depending on the distribution of branch lengths.

Suggested Citation

  • Kotak, Jesal D. & Barma, Mustansir, 2022. "Bias induced drift and trapping on random combs and the Bethe lattice: Fluctuation regime and first order phase transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
  • Handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002540
    DOI: 10.1016/j.physa.2022.127311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002540
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    2. Weiss, George H. & Havlin, Shlomo, 1986. "Some properties of a random walk on a comb structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 474-482.
    3. Deepak Dhar & Dietrich Stauffer, 1998. "Drift and Trapping in Biased Diffusion on Disordered Lattices," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 349-355.
    4. Pottier, Noëlle, 1995. "Diffusion on random comblike structures: field-induced trapping effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 216(1), pages 1-19.
    5. Alexander Kirsch, 1998. "Phase Transition in Two-Dimensional Biased Diffusion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(07), pages 1021-1024.
    6. Aslangul, C. & Pottier, N. & Chvosta, P., 1994. "Analytic study of a model of diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 533-565.
    7. Stauffer, D, 1999. "New simulations on old biased diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 35-41.
    8. Pottier, N., 1994. "Analytic study of a model of biased diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(1), pages 91-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pottier, N., 1994. "Analytic study of a model of biased diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(1), pages 91-123.
    2. Valerii M Sukhorukov & Jürgen Bereiter-Hahn, 2009. "Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
    3. Arkhincheev, V.E., 2020. "The capture of particles on absorbing traps in the medium with anomalous diffusion: The effective fractional order diffusion equation and the slow temporal asymptotic of survival probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    5. Endre Csáki & Antónia Földes, 2022. "Strong Approximation of the Anisotropic Random Walk Revisited," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2879-2895, December.
    6. Pottier, Noëlle, 1995. "Diffusion on random comblike structures: field-induced trapping effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 216(1), pages 1-19.
    7. Baskin, Emmanuel & Iomin, Alexander, 2011. "Electrostatics in fractal geometry: Fractional calculus approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 335-341.
    8. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    9. Dzhanoev, A.R. & Sokolov, I.M., 2018. "The effect of the junction model on the anomalous diffusion in the 3D comb structure," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 330-336.
    10. Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
    11. Sandev, Trifce & Schulz, Alexander & Kantz, Holger & Iomin, Alexander, 2018. "Heterogeneous diffusion in comb and fractal grid structures," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 551-555.
    12. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 2011. "On the local time of random walk on the 2-dimensional comb," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1290-1314, June.
    13. Aslangul, C. & Pottier, N. & Chvosta, P., 1994. "Analytic study of a model of diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 533-565.
    14. Endre Csáki & Antónia Földes, 2022. "On the Local Time of the Half-Plane Half-Comb Walk," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1247-1261, June.
    15. Endre Csáki & Antónia Földes, 2020. "Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ Z 2," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2233-2257, December.
    16. Méndez, Vicenç & Iomin, Alexander, 2013. "Comb-like models for transport along spiny dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 46-51.
    17. Iomin, Alexander, 2011. "Fractional-time Schrödinger equation: Fractional dynamics on a comb," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 348-352.
    18. Iomin, A. & Méndez, V., 2016. "Does ultra-slow diffusion survive in a three dimensional cylindrical comb?," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 142-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.