IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0004604.html
   My bibliography  Save this article

Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane

Author

Listed:
  • Valerii M Sukhorukov
  • Jürgen Bereiter-Hahn

Abstract

Diffusion of inner membrane proteins is a prerequisite for correct functionality of mitochondria. The complicated structure of tubular, vesicular or flat cristae and their small connections to the inner boundary membrane impose constraints on the mobility of proteins making their diffusion a very complicated process. Therefore we investigate the molecular transport along the main mitochondrial axis using highly accurate computational methods. Diffusion is modeled on a curvilinear surface reproducing the shape of mitochondrial inner membrane (IM). Monte Carlo simulations are carried out for topologies resembling both tubular and lamellar cristae, for a range of physiologically viable crista sizes and densities. Geometrical confinement induces up to several-fold reduction in apparent mobility. IM surface curvature per se generates transient anomalous diffusion (TAD), while finite and stable values of projected diffusion coefficients are recovered in a quasi-normal regime for short- and long-time limits. In both these cases, a simple area-scaling law is found sufficient to explain limiting diffusion coefficients for permeable cristae junctions, while asymmetric reduction of the junction permeability leads to strong but predictable variations in molecular motion rate. A geometry-based model is given as an illustration for the time-dependence of diffusivity when IM has tubular topology. Implications for experimental observations of diffusion along mitochondria using methods of optical microscopy are drawn out: a non-homogenous power law is proposed as a suitable approach to TAD. The data demonstrate that if not taken into account appropriately, geometrical effects lead to significant misinterpretation of molecular mobility measurements in cellular curvilinear membranes.

Suggested Citation

  • Valerii M Sukhorukov & Jürgen Bereiter-Hahn, 2009. "Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
  • Handle: RePEc:plo:pone00:0004604
    DOI: 10.1371/journal.pone.0004604
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004604
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004604&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0004604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    2. Weiss, George H. & Havlin, Shlomo, 1986. "Some properties of a random walk on a comb structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 474-482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotak, Jesal D. & Barma, Mustansir, 2022. "Bias induced drift and trapping on random combs and the Bethe lattice: Fluctuation regime and first order phase transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Pottier, N., 1994. "Analytic study of a model of biased diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(1), pages 91-123.
    3. Arkhincheev, V.E., 2020. "The capture of particles on absorbing traps in the medium with anomalous diffusion: The effective fractional order diffusion equation and the slow temporal asymptotic of survival probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    5. Endre Csáki & Antónia Földes, 2022. "Strong Approximation of the Anisotropic Random Walk Revisited," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2879-2895, December.
    6. Baskin, Emmanuel & Iomin, Alexander, 2011. "Electrostatics in fractal geometry: Fractional calculus approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 335-341.
    7. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    8. Dzhanoev, A.R. & Sokolov, I.M., 2018. "The effect of the junction model on the anomalous diffusion in the 3D comb structure," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 330-336.
    9. Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
    10. Sandev, Trifce & Schulz, Alexander & Kantz, Holger & Iomin, Alexander, 2018. "Heterogeneous diffusion in comb and fractal grid structures," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 551-555.
    11. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 2011. "On the local time of random walk on the 2-dimensional comb," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1290-1314, June.
    12. Aslangul, C. & Pottier, N. & Chvosta, P., 1994. "Analytic study of a model of diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 533-565.
    13. Endre Csáki & Antónia Földes, 2022. "On the Local Time of the Half-Plane Half-Comb Walk," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1247-1261, June.
    14. Endre Csáki & Antónia Földes, 2020. "Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ Z 2," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2233-2257, December.
    15. Méndez, Vicenç & Iomin, Alexander, 2013. "Comb-like models for transport along spiny dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 46-51.
    16. Iomin, Alexander, 2011. "Fractional-time Schrödinger equation: Fractional dynamics on a comb," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 348-352.
    17. Iomin, A. & Méndez, V., 2016. "Does ultra-slow diffusion survive in a three dimensional cylindrical comb?," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 142-147.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0004604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.