IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v105y2017icp29-37.html
   My bibliography  Save this article

Coveting the successful neighbor promotes the cooperation for the spatial public goods game on two-layered lattices

Author

Listed:
  • Zhang, Yingchao
  • Ning, Hongyun
  • Wang, Juan
  • Xia, Chengyi

Abstract

In this paper, we propose a novel public goods game model with preferential learning mechanism on two-layered lattices, and two different tunable parameters w and α have been introduced into the model to denote the extent of preferential learning and coupling strength among corresponding players, respectively. Huge quantities of Monte Carlo simulations indicate that, on the one hand, the fraction of cooperators at the stationary state can be greatly enhanced if the preference parameter w > 0, but the cooperation level can be reduced if w < 0; On the other hand, the interdependency between two-layered lattices will further enrich the evolution of cooperation, and the role of promotion becomes much more obvious when coupling strength w is zero or a small positive constant; while the interdependency will play a minor role when w ≥ 1 since the preference mechanism has driven the cooperation to arrive at a very high level. All these results can help us to further analyze and understand the evolution of cooperation within many real-world systems.

Suggested Citation

  • Zhang, Yingchao & Ning, Hongyun & Wang, Juan & Xia, Chengyi, 2017. "Coveting the successful neighbor promotes the cooperation for the spatial public goods game on two-layered lattices," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 29-37.
  • Handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:29-37
    DOI: 10.1016/j.chaos.2017.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917304095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    2. Chunyan Zhang & Jianlei Zhang & Guangming Xie & Long Wang & Matjaž Perc, 2011. "Evolution of Interactions and Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    3. Keizo Shigaki & Zhen Wang & Jun Tanimoto & Eriko Fukuda, 2013. "Effect of Initial Fraction of Cooperators on Cooperative Behavior in Evolutionary Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-7, November.
    4. Cheng-Yi Xia & Xiao-Kun Meng & Zhen Wang, 2015. "Heterogeneous Coupling between Interdependent Lattices Promotes the Cooperation in the Prisoner’s Dilemma Game," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
    5. Karthik Panchanathan & Robert Boyd, 2004. "Indirect reciprocity can stabilize cooperation without the second-order free rider problem," Nature, Nature, vol. 432(7016), pages 499-502, November.
    6. Jin, Qing & Wang, Zhen & Wang, Zhen & Wang, Yi-Ling, 2012. "Strategy changing penalty promotes cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 395-401.
    7. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    8. Li, Xianghua & Wang, Zhen & Gao, Chao & Shi, Lei, 2017. "Reasoning human emotional responses from large-scale social and public media," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 182-193.
    9. Xia, Cheng-yi & Ma, Zhi-qin & Wang, Yi-ling & Wang, Jin-song & Chen, Zeng-qiang, 2011. "Enhancement of cooperation in prisoner’s dilemma game on weighted lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4602-4609.
    10. Meng, Xiaokun & Sun, Shiwen & Li, Xiaoxuan & Wang, Li & Xia, Chengyi & Sun, Junqing, 2016. "Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 388-396.
    11. Juan Wang & Wenwen Lu & Lina Liu & Li Li & Chengyi Xia, 2016. "Utility Evaluation Based on One-To-N Mapping in the Prisoner’s Dilemma Game for Interdependent Networks," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Changwei & Han, Wenchen & Li, Haihong & Cheng, Hongyan & Dai, Qionglin & Yang, Junzhong, 2019. "Public cooperation in two-layer networks with asymmetric interaction and learning environments," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 305-313.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    2. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    3. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    4. Ding, Chenxi & Wang, Juan & Zhang, Ying, 2016. "Impact of self interaction on the evolution of cooperation in social spatial dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 393-399.
    5. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    6. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    7. Deng, Lili & Lin, Ying & Wang, Cheng & Xu, Ronghua & Zhou, Gengui, 2020. "Effects of coupling strength and coupling schemes between interdependent lattices on the evolutionary ultimatum game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Chen, Zhi-Gang & Wang, Tao & Xiao, De-Gui & Xu, Yin, 2013. "Can remembering history from predecessor promote cooperation in the next generation?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 59-68.
    9. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    10. Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
    11. Tian, Lin-Lin & Li, Ming-Chu & Lu, Kun & Zhao, Xiao-Wei & Wang, Zhen, 2013. "The influence of age-driven investment on cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 65-70.
    12. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    13. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    14. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2017. "Publishing the donation list incompletely promotes the emergence of cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 48-56.
    15. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    16. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    17. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Li-Gao,, 2018. "Multigames with social punishment and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 164-170.
    18. Wang, Zhen & Wu, Bin & Li, Ya-peng & Gao, Hang-xian & Li, Ming-chu, 2013. "Does coveting the performance of neighbors of thy neighbor enhance spatial reciprocity?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 28-34.
    19. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    20. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:29-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.