IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v426y2022ics0096300322001771.html
   My bibliography  Save this article

The influence of experienced guider on cooperative behavior in the Prisoner’s dilemma game

Author

Listed:
  • You, Tao
  • Zhang, Hailun
  • Zhang, Ying
  • Li, Qing
  • Zhang, Peng
  • Yang, Mei

Abstract

In game theory, it is an essential topic to study the emergence and maintenance of cooperative behavior in groups based on the theories of evolutionary game and complex network. Unfortunately, an in-depth analysis of cooperative behavior on maintenance and development is usually challenged by the diversity of groups in society, which is mainly caused by the single mechanism in traditional networks. More recent studies have shown that multi-layer coupled network based evolutionary game theory is promising in exploiting the transmission of cooperative behavior between individuals in the game. Meanwhile, inspired by the decisive ability of reinforcement learning in overcoming the limitation of replica, in this work, we propose to combine the game strategy of reinforcement learning with the traditional prisoner’s dilemma strategy based on multiple coupled networks. The most advantage of this model is the improved capability of intelligent decision making for group behaviors. With the simulation of game evolution, the influence of individual strategy change, as well as individual ability on cooperative behavior in reinforcement learning, is also explored. Substantial validations have verified that in social dilemmas, the cooperative behavior can be maintained by adjusting the group’s ability with effective guidance.

Suggested Citation

  • You, Tao & Zhang, Hailun & Zhang, Ying & Li, Qing & Zhang, Peng & Yang, Mei, 2022. "The influence of experienced guider on cooperative behavior in the Prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 426(C).
  • Handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001771
    DOI: 10.1016/j.amc.2022.127093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Xiaokun & Sun, Shiwen & Li, Xiaoxuan & Wang, Li & Xia, Chengyi & Sun, Junqing, 2016. "Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 388-396.
    2. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Takahiro Ezaki & Yutaka Horita & Masanori Takezawa & Naoki Masuda, 2016. "Reinforcement Learning Explains Conditional Cooperation and Its Moody Cousin," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-13, July.
    4. Cheng-Yi Xia & Xiao-Kun Meng & Zhen Wang, 2015. "Heterogeneous Coupling between Interdependent Lattices Promotes the Cooperation in the Prisoner’s Dilemma Game," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
    5. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    6. Zhu, Peican & Wang, Xiaoyu & Jia, Danyang & Guo, Yangming & Li, Shudong & Chu, Chen, 2020. "Investigating the co-evolution of node reputation and edge-strategy in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Jia, Danyang & Li, Tong & Zhao, Yang & Zhang, Xiaoqin & Wang, Zhen, 2022. "Empty nodes affect conditional cooperation under reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    8. Zhang, Jun & Wang, Wei-Ye & Du, Wen-Bo & Cao, Xian-Bin, 2011. "Evolution of cooperation among mobile agents with heterogenous view radii," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2251-2257.
    9. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    10. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yao & Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2024. "The cooperative evolution in the spatial prisoner's dilemma game with the local loyalty of two-strategy," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    2. Hao, Weijuan & Hu, Yuhan, 2024. "The implications of deep cooperation strategy for the evolution of cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    3. You, Tao & Yang, Haochun & Wang, Jian & Zhang, Peng & Chen, Jinchao & Zhang, Ying, 2023. "Cooperative behavior under the influence of multiple experienced guiders in Prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    4. Lu, Wen & Liang, Shu, 2023. "Direct emotional interaction in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Tao & Yang, Haochun & Wang, Jian & Zhang, Peng & Chen, Jinchao & Zhang, Ying, 2023. "Cooperative behavior under the influence of multiple experienced guiders in Prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    2. Jian, Qing & Li, Xiaopeng & Wang, Juan & Xia, Chengyi, 2021. "Impact of reputation assortment on tag-mediated altruistic behaviors in the spatial lattice," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    3. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    4. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    5. Li, Bing & Zhao, Xiaowei & Xia, Haoxiang, 2019. "Promotion of cooperation by Hybrid Migration mechanisms in the Spatial Prisoner’s Dilemma Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 1-8.
    6. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Hu, Qi & Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2024. "Reputation incentives with public supervision promote cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    8. Mengibaev, Ulugbek & Jia, Xiaodan & Ma, Yeqing, 2020. "The impact of interactive dependence on privacy protection behavior based on evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    9. Griffin, Christopher & Semonsen, Justin & Belmonte, Andrew, 2022. "Generalized Hamiltonian dynamics and chaos in evolutionary games on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    10. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    11. Zhenghong Wu & Huan Huang & Qinghu Liao, 2021. "The study on the role of dedicators on promoting cooperation in public goods game," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    12. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    13. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    14. Ding, Chenxi & Wang, Juan & Zhang, Ying, 2016. "Impact of self interaction on the evolution of cooperation in social spatial dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 393-399.
    15. Liu, Yandi & Zheng, Tainian & Li, Yonghui & Dai, Yu, 2020. "Does the conformity save us when information advantage fails?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    16. Bai, Pengzhou & Qiang, Bingzhuang & Zou, Kuan & Huang, Changwei, 2024. "Preferential selection based on adaptive attractiveness induce by reinforcement learning promotes cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    17. Gao, Hongyu & Wang, Juan & Zhang, Fan & Li, Xiaopeng & Xia, Chengyi, 2021. "Cooperation dynamics based on reputation in the mixed population with two species of strategists," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    18. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2021. "Evolution of cooperation through aspiration-based adjustment of interaction range in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    19. Geng, Yini & Liu, Yifan & Lu, Yikang & Shen, Chen & Shi, Lei, 2022. "Reinforcement learning explains various conditional cooperation," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    20. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2022. "Advanced defensive cooperators promote cooperation in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.